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Linear algebra
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Basic concepts

Consider the following equations:

4x1 − 5x2 = −13 (1)

−2x1 + 3x2 = 9 (2)

Let’s solve for x1 and x2.

We can write this system of equations more compactly in matrix
notation, e.g.

Ax = b (3)

where A =

[
4 −5
−2 3

]
and b =

[
−13
9

]
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Basic concepts

Some basic notation:

▶ We denote a matrix with m rows and n columns as
A ∈ Rm×n, where each entry in the matrix is a real number.

▶ We denote a vector with n entries as x ∈ Rn.

▶ By convention, we typically think of a vector as a 1 column
matrix.

▶ We denote the i th element of a vector x as xi , e.g.

x =


x1
x2
...
xn

 (4)
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Basic concepts

Some basic notation:

▶ We denote each entry in a matrix A by aij , corresponding to
the i th row and j th column, e.g.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 (5)

▶ We denote the transpose of a matrix as A⊤, e.g.

A⊤ =


a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn

 (6)
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Basic concepts

Some basic notation:

▶ We denote the j th column of A by aj or A·j , e.g.

A =

 | | |
a1 a2 · · · an
| | |

 (7)

▶ We denote the i th row of A by a⊤i or Ai ·.

A =


a⊤1
a⊤2
...
a⊤m

 (8)

n.b. This isn’t universal, though should be clear from its
presentation and use.
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Matrix multiplication

Given two matrices A ∈ Rm×n, B ∈ Rn×p, we can multiply them
by

C = AB ∈ Rm×p : Cij =
n∑

k=1

AikBkj (9)

n.b. The dimensions have to be compatible for matrix
multiplication to be valid (e.g. the number of columns in A must
be equal to the number of rows in B).
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Matrix multiplication

Given x, y ∈ Rn, the quantity x⊤y ∈ R (aka dot product or inner
product) is a scalar given by

x⊤y =
[
x1 x2 · · · xn

]

y1
y2
...
yn

 =
n∑

i=1

xiyi (10)

Note: For vectors, we always have that x⊤y = y⊤x. This is not
generally true for matrices.
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Matrix multiplication

Given x ∈ Rm, y ∈ Rn, the quantity x⊤y ∈ Rm×n (aka outer
product) is a matrix given by

xy⊤ =


x1
x2
...
xn

 [y1 y2 · · · yn
]
=


x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn
...

...
. . .

...
xmy1 xmy2 · · · xmyn

 (11)
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Matrix multiplication

Example: Let A ∈ Rm×n be a matrix such that all columns are
equal to some vector x ∈ Rm. Using outer products, we can
represent A compactly as

A =

 | | |
x x · · · x
| | |

 =


x1 x1 · · · x1
x2 x2 · · · x2
...

...
. . .

...
xm xm · · · xm

 (12)

=


x1
x2
...
xm

 [1 1 · · · 1
]

(13)

= x1⊤ (14)
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Matrix-vector products

Given A ∈ Rm×n, x ∈ Rn, their product is a vector
y = Ax ∈ Rm.

There are two ways of interpreting this:

y = Ax =


a⊤1
a⊤2
...
a⊤m

 x =


a⊤1 x
a⊤2 x
...

a⊤mx

 (15)

=

 | | |
a1 a2 · · · an
| | |



x1
x2
· · ·
xn

 (16)

= a1x1 + a2x2 + · · ·+ anxn (17)
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Matrix-vector products

Example:

Define A =


1 2 3
2 5 6
7 8 9
10 11 12

 , x =

−3
−2
−1

.
Calculate y = Ax.
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Matrix-matrix products

Given A ∈ Rm×n,B ∈ Rn×p, their product is a matrix
C = AB ∈ Rm×p.

Similar to before, we can think of this in two ways:

Interpretation # 1

C = AB =


a⊤1
a⊤2
...
a⊤m


 | | |
b1 b2 · · · bp
| | |

 (18)

=


a⊤1 b1 a⊤1 b2 · · · a⊤1 bp
a⊤2 b1 a⊤2 b2 · · · a⊤2 bp
...

...
. . .

...
a⊤mb1 a⊤mb2 · · · a⊤mbp

 (19)
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Matrix-matrix products

Interpretation # 2

C = AB = A

 | | |
b1 b2 · · · bp
| | |

 (20)

=

 | | |
Ab1 Ab2 · · · Abp
| | |

 (21)

=


a⊤1
a⊤2
...
a⊤m

B =


a⊤1 B
a⊤2 B
...

a⊤mB

 (22)
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Matrix multiplication properties

▶ Associative: (AB)C = A(BC)

▶ Distributive: A(B+ C) = AB+ AC

▶ Not commutative: AB ̸= BA
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Matrix multiplication properties

Demonstrating associativity:

We just need to show that ((AB)C)ij = (A(BC))ij :

((AB)C)ij =

p∑
k=1

(AB)ikCkj =

p∑
k=1

(
n∑

l=1

AilBlk

)
Ckj (23)

=

p∑
k=1

(
n∑

l=1

AilBlkCkj

)
=

n∑
l=1

(
p∑

k=1

AilBlkCkj

)
(24)

=
n∑

l=1

Ail

(
p∑

k=1

BlkCkj

)
=

n∑
l=1

Ail(BC)lj (25)

= (A(BC))ij (26)
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Operations & properties

The identity matrix:

The identity matrix, denoted I ∈ Rn×n is a square matrix with 1’s
in the diagonal and 0’s everywhere else, i.e.

Iij =

{
1 i = j

0 i ̸= j
(27)

It has the property

AI = A = IA ∀A ∈ Rm×n (28)

n.b. The dimensionality of I is typically inferred (e.g. n × n vs
m ×m)
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Operations & properties

The diagonal matrix: The diagonal matrix, denoted
D = diag(d1, d2, . . . , dn) is a matrix where all non-diagonal
elements are 0, i.e.

Dij =

{
di i = j

0 i ̸= j
(29)

Clearly, I = diag(1, 1, ..., 1).
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The transpose

The transpose of a matrix results from “flipping” the rows and
columns, i.e.

(A⊤)ij = Aji (30)

Consequently, for A ∈ Rm×n we have that A⊤ ∈ Rn×m.

Some properties:

▶ (A⊤)⊤ = A

▶ (AB)⊤ = B⊤A⊤

▶ (A+ B)⊤ = A⊤ + B⊤
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Symmetry

A square matrix A ∈ Rn×n is symmetric if A = A⊤.

It is anti-symmetric if A = −A⊤.

It is easy to show that A+ A⊤ is symmetric and A− A⊤ is
anti-symmetric. Consequently, we have that

A =
1

2
(A+ A⊤) +

1

2
(A− A⊤) (31)

Symmetric matrices tend to be denoted as A ∈ Sn.
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Trace

The trace of a square matrix A ∈ Rn×n, denoted tr(A) or trA is
the sum of the diagonal elements, i.e.

trA =
n∑

i=1

Aii (32)

The trace has the following properties:

▶ For A ∈ Rn×n, trA = trA⊤

▶ For A,B ∈ Rn×n, tr(A+ B) = trA+ trB

▶ For A ∈ Rn×n, c ∈ R, tr(cA) = c trA

▶ For A,B ∈ Rn×n ϶ AB ∈ Rn×n, trAB = trBA

▶ For A,B,C ∈ Rn×n ϶ ABC ∈ Rn×n,
trABC = trBCA = trCAB, and so on for more matrices
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Trace

Example: Proving that trAB = trBA

trAB =
m∑
i=1

(AB)ii =
m∑
i=1

 n∑
j=1

AijBji

 (33)

=
m∑
i=1

n∑
j=1

AijBji =
m∑
i=1

n∑
j=1

BjiAij (34)

=
m∑
i=1

 n∑
j=1

BjiAij

 =
n∑

j=1

(BA)jj (35)

= trBA (36)
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Norms

A norm of a vector x, denoted ||x|| is a measure of the “length” of
the vector. For example, the ℓ2-norm (aka Euclidean norm)
is

||x||2=

√√√√ n∑
i=1

x2i (37)

n.b. ||x||22= x⊤x, i.e. the squared norm of a vector is the dot
product with itself.

Other norms:

▶ ℓ1-norm, i.e. ||x||1=
∑n

i=1|xi |.

▶ ℓ∞-norm, i.e. ||x||∞= max
i
|xi |.

▶ ℓp-norm, i.e. ||x||p= (
∑n

i=1|xi |p)
1/p.
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Norms

Formally, a norm is any function f : Rn → R satisfying four
properties:

1. ∀x ∈ Rn, f (x) ≥ 0 (non-negativity).

2. f (x) = 0 iff x = 0 (definiteness).

3. ∀x ∈ Rn, c ∈ R, f (cx) = |c |f (x) (homogeneity).

4. ∀x, y ∈ Rn, f (x+ y) ≤ f (x) + f (y) (triangle inequality).

Norms can also be defined for matrices, e.g. The Frobenius
norm,

||A||F=

√√√√ m∑
i=1

n∑
j=1

A2
ij =

√
tr(A⊤A) (38)
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Linear independence

A set of vectors {x1, x2, . . . , xn} ∈ Rm is (linearly) dependent if
one of the vectors xi can be represented as a linear combination of
the remaining vectors, i.e.

xn =
n−1∑
i=1

αixi (39)

for some scalar values α1, α2, . . . , αn−1 ∈ R

Example: Let

x1 =

12
3

 x2 =

41
5

 x3 =

 2
−3
−1

 (40)

Is {x1, x2, x3} linearly independent?
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Rank

The column rank of A ∈ Rm×n is the largest subset of columns of
A that are linearly independent.

▶ The column rank is always ≤ n.

The row rank of A ∈ Rm×n is the largest subset of rows of A that
are linearly independent.

▶ The row rank is always ≤ m.

n.b. Column rank is always equal to row rank. Thus, we refer to
both as the rank of the matrix.

▶ For A ∈ Rm×n, if rank(A) = min(m, n), then A is said to be
of full rank.

▶ For A ∈ Rm×n, rank(A) = rank(A⊤.
▶ For A ∈ Rm×n,B ∈ Rn×p,

rank(AB) ≤ min(rank(A), rank(B)).
▶ For A,B ∈ Rm×n, rank(A+ B) ≤ rank(A) + rank(B)
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Matrix inverse

The inverse of a square matrix A ∈ Rn×n is denoted A−1, and is
unique such that

A−1A = I = AA−1 (41)

n.b. Not all matrices have inverses (e.g. m × n matrices).

Def:
A is invertible or non-singular if A−1 exists.
Otherwise, it is non-invertible or singular.

1. (A−1)−1 = A

2. (AB)−1 = B−1A−1

3. (A−1)⊤ = (A⊤)−1

▶ This matrix is sometimes denoted A−⊤
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Orthogonal Matrices

Def:
▶ A vector x ∈ Rn is normalized if ||x||2= 1

▶ Two vectors x, y ∈ Rn are orthogonal if x⊤y = 0

▶ A square matrix U ∈ Rn×n is orthogonal or orthonormal if all
its columns are:

1. Orthogonal to each other

2. Normalized

We therfore have that

U⊤U = I = UU⊤ (42)

Another nice property:

||Ux||2= ||x||2 ∀x ∈ Rn,U ∈ Rn×n orthogonal (43)
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Range

Def:
The span of a set of vectors {x1, x2, . . . , xn} is

span({x1, x2, . . . , xn}) =

{
v : v =

n∑
i=1

αixi , αi ∈ R

}
(44)

n.b. If {x1, x2, . . . , xn} is linearly independent, then
span({x1, x2, . . . , xn}) = Rn.

Example:

x1 =

[
1
0

]
x2 =

[
0
1

]
(45)
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Range
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Projection

Def:
The projection of a vector y ∈ Rm onto
span({x1, x2, . . . , xn}) = Rn is

Proj(y; {x1, x2, . . . , xn}) = argmin
v∈span({x1,x2,...,xn})

||y − v||2 (46)
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Range

Def:
The range of a matrix A ∈ Rm×n, denoted R(A) is the span of the
columns of A, i.e.

R(A) = {v ∈ Rm : v = Ax, x ∈ Rn} (47)

Assuming that A is full rank and n < m, the projection of y ∈ Rm

onto R(A) is

Proj(y;A) = argmin
v∈R(A)

||v − y||2 (48)

= A(A⊤A)−1A⊤y (49)
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Nullspace

Def:
The nullspace of a matrix A ∈ Rm×n, denoted N (A) is the set of
all vectors that equal 0 when multiplied by A, i.e.

N (A) = {x ∈ Rn : Ax = 0} (50)

Some properties:

▶ {w : w = u + v , u ∈ R(A⊤), v ∈ R(A)} = Rn

▶ R(A⊤)
⋂

N (A) = {0}

This is referred to as orthogonal complements, denoted as
R(A⊤) = N (A)⊥
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Determinant

Def:
The determinant of a square matrix A ∈ Rn×n, denoted |A| or det
A is a function det: Rn×n → R.

Let A\i ,\j ∈ R(n−1)×(n−1) be the matrix that results from deleting

the i th row and j th column. The general (recursive) formula for the
determinant is

|A| =
∑n

i=1(−1)i+jaij |A\i ,\j | (∀j ∈ 1, ..., n)
=
∑n

j=1(−1)i+jaij |A\i ,\j | (∀i ∈ 1, ..., n)
(51)
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Determinant

Given a matrix

A =


a⊤1
a⊤2
...
a⊤n

 (52)

and a set S ⊂ Rn,

S = {v ∈ Rn : v =
n∑

i=1

αiai where 0 ≤ αi ≤ 1, i = 1, ..., n} (53)

|A| is the volume of S.
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Determinant

Example:

A =

[
1 3
3 2

]
(54)

The matrix rows are:

a1 =

[
1
3

]
a2 =

[
3
2

]
(55)

And |A|= −7
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Determinant

Properties of determinants:

▶ For A ∈ Rn×n, |A|= |A⊤|

▶ For A,B ∈ Rn×n, |AB|= |A||B|

▶ For A ∈ Rn×n, |A|= 0 iff A is singular (i.e. non-invertible).

▶ For A ∈ Rn×n and A non-singular, |A−1|= 1/|A|
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Quadratic form

Given A ∈ Rn×n and a vector x ∈ Rn, the quadratic form is the
scalar value

x⊤Ax =
n∑

i=1

xi (Ax)i =
n∑

i=1

xi

 n∑
j=1

Aijxj

 =
n∑

i=1

n∑
j=1

Aijxixj (56)
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Quadratic form

Some properties involving quadratic form:

▶ A symmetric matrix A ∈ Sn is positive definite if for a
non-zero x ∈ Rn, x⊤Ax > 0

▶ A symmetric matrix A ∈ Sn is positive semi-definite if for a
non-zero x ∈ Rn, x⊤Ax ≥ 0

▶ A symmetric matrix A ∈ Sn is negative definite if for a
non-zero x ∈ Rn, x⊤Ax < 0

▶ A symmetric matrix A ∈ Sn is negative semi-definite if for a
non-zero x ∈ Rn, x⊤Ax ≤ 0

▶ A symmetric matrix A ∈ Sn is indefinite if it is neither positive
nor negative semidefinite

n.b. Positive definite and negative definite matrices always have
full rank.
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Eigenvalues & eigenvectors

Given A ∈ Rn×n, λ ∈ C is an eigenvalue of A with corresponding
eigenvector x ∈ Cn if

Ax = λx : x ̸= 0 (57)

n.b. The eigenvector is (usually) normalized to have length 1

We can write all of the eigenvector equations simultaneously
as

AX = XΛ (58)

where

X ∈ Rn×n =

 | | |
x1 x2 · · · xn
| | |

 , Λ = diag(λ1, ..., λn) (59)

This implies A = XΛX−1
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Eigenvalues & eigenvectors

Some properties:

▶ trA =
∑n

i=1 λi

▶ |A|=
∏n

i=1 λi

▶ The rank of A is equal to the number of non-zero eigenvalues
of A.

▶ If A is non-singular, then 1/λi is an eigenvalue of A−1 with
correspondng eigenvector xi , i.e. A

−1xi = (1/λi )xi

▶ The eigenvalues of a diagonal matrix D = diag(d1, ..., dn) are
just its diagonal entries d1, ..., dn
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Eigenvalues & eigenvectors

Example: For A ∈ Sn with ordered eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn,

max
x∈Rn

x⊤Ax subject to ||x||22= 1 (60)

is solved with x1 corresponding to λ1. Similarly, it is solved with xn
corresponding to λn.
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Eigenvalues & eigenvectors

Example:

Let A =

[
1 2
2 1

]
Find the eigenvalues & eigenvectors.

We want
(A− λI)x = 0 (61)

We want det(A− λI) = 0.

det(A− λI) = (1− λ)2 − 22 = λ2 − 2λ− 3 (62)

= (λ− 3)(λ+ 1) (63)

∴ λ = 3,−1.
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Eigenvalues & eigenvectors

Finding the eigenvectors: calculating the null spaces of
(A− λI)

N (A− 3I) = N
([

−2 2
2 −2

])
=

[
1
1

]
(64)

N (A+ I) = N
([

2 2
2 2

])
=

[
1
−1

]
(65)

Thus:

X =

[
1 1
1 −1

]
,Λ =

[
3 0
0 −1

]
(66)
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Singular Value Decomposition

SVD is a way of decomposing matrices.

Given A ∈ Rm×n with rank r , ∃
Σ ∈ Rm×n,U ∈ Rm×m,V ∈ Rn×m ϶

A = UΣV⊤ (67)

Notes:

▶ Σ is a diagonal matrix with entries σ1, ..., σr > 0 known as
singular values.

▶ U and V are orthogonal matrices.

▶ Common uses:

▶ Least squares models

▶ Range, rank, null space

▶ Moore-Penrose inverse
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Singular Value Decomposition

Some intuition:

A ∈ Rm×n can be thought of as a linear transformation, such that
for x ∈ Rn,

f (x) = Ax (68)

SVD can be thought of as breaking this into individual steps:
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Matrix calculus

Given f : Rm×n → R, the gradient of f wrt A ∈ Rm×n is

∇Af (A) ∈ Rm×n =


∂f (A)
∂A11

∂f (A)
∂A12

· · · ∂f (A)
∂A1n

∂f (A)
∂A21

∂f (A)
∂A22

· · · ∂f (A)
∂A2n

...
...

. . .
...

∂f (A)
∂Am1

∂f (A)
∂Am2

· · · ∂f (A)
∂Amn

 (69)

Some properties

▶ ∇x(f (x) + g(x)) = ∇xf (x) +∇xg(x)

▶ For c ∈ R,∇x(c f (x)) = c∇x(f (x))
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The Hessian

Given f : Rn → R, the Hessian of f wrt x ∈ Rn is

∇2
xf (x) ∈ Rn×n =


∂2f (x)
∂x21

∂2f (x)
∂x1∂x2

· · · ∂2f (x)
∂x1∂xn

∂2f (x)
∂x2∂x1

∂2f (x)
∂x22

· · · ∂2f (x)
∂x2∂xn

...
...

. . .
...

∂2f (x)
∂xn∂x1

∂2f (x)
∂xn∂x2

· · · ∂2f (x)
∂x2n

 (70)

n.b. The Hessian is always symmetric, since ∂2f (x)
∂xi∂xj

= ∂2f (x)
∂xj∂xi
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Least squares

Given A ∈ Rm×n,b ∈ Rm ϶ b /∈ R(A), we want to find x ∈ Rn as
close as possible to b (via the Euclidean norm),

||Ax− b||22 = (Ax− b)⊤(Ax− b) (71)

= x⊤A⊤Ax− 2b⊤Ax+ b⊤b (72)

Taking the gradient wrt x, we have

∇x(x
⊤A⊤Ax− 2b⊤Ax+ b⊤b) = ∇xx

⊤A⊤Ax−∇x2b
⊤Ax+∇xb

⊤b(73)

= A⊤Ax− 2A⊤b (74)

Setting this expression equal to zero and solving for x gives the
normal equations,

x = (A⊤A)−1A⊤b (75)
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Sample space

The set of all possible values is called the sample space S .

▶ It’s the space where realizations can be produced.

Example: Tossing a coin

S = {Heads,Tails} (76)

More notation:

▶ ∅ is the empty set. Can be denoted as ∅ = {}.
▶ ∪∞

i=1Bi is the union of sets Bi . Formally,

▶ ∪∞
i=1Bi = {s ∈ S : s ∈ Bi∀ i}

▶ B ⊆ S means B is a subset of the sample space.

▶ Heads, without curly braces, is an element of set B.

▶ BC = S \ B is the complement of set B
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Probability function

A probability function is a function P : B → [0, 1], where

▶ P(S) = 1

▶ P (∪∞
i=1Bi ) =

∑∞
i=1 P(Bi ) when B1,B2, . . . are disjoint

n.b. We can define the domain B many ways, e.g. B = 2S

Example: For flipping a coin, we have

B = 2S = {∅, {Heads}, {Tails}, {Heads,Tails}} (77)

This implies that

P(B) =


1 B = {Heads,Tails}
1
2 B = {Heads}
1
2 B = {Tails}
0 B = ∅

(78)

n.b. The power set is a ’set of sets’
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Probability function domains

Problem: Power sets don’t work well for R.

Solution: Define the domain using σ−algebra:

▶ ∅ ∈ B

▶ B ∈ B ⇒ BC ∈ B

▶ B1,B2, . . . ∈ B ⇒ ∪∞
i=1Bi ∈ B

Example:
▶ The discrete σ-algebra:

B = 2S = {∅, {Heads}, {Tails}, {Heads,Tails}}

▶ The trivial σ-algebra: B = ∅ ∪ S = {∅, {Heads,Tails}}

n.b. For uncountable sets, we use the Borel σ-algebra.
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Probability space

Def:
A probability space is a triple (S ,B,P).

▶ S is the set of possible singleton events

▶ B is the set of questions to ask P

▶ P maps sets into probabilities

n.b. They represent the ingredients needed to talk about
probabilities
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Probability functions

Some properties of P(·)

▶ P(B) = 1− P(BC )

▶ P(∅) = 0, since P(∅) = 1− P(S)

▶ P(A ∪ B) = P(A) + P(B)− P(A ∩ B), implying that

▶ P(A ∪ B) ≤ P(A) + P(B)

▶ P(A ∩ B) ≥ P(A) + P(B)− 1
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Conditional probability

For events A and B where P(B) > 0, the conditional probability of
A given B (denoted P(A|B)) is

P(A|B) = P(A ∩ B)

P(B)
(79)

Example: In an agricultural region with 1000 farms, we want to
know if the farm has vineyards or cork trees.

Cork Trees
Yes No

Vineyard
Yes 200 50
No 150 600

Table: Frequency counts
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Conditional probability

Example: In an agricultural region with 1000 farms, we want to
know if the farm has vineyards or cork trees.

Cork Trees
Yes No

Vineyard
Yes 20% 5%
No 15% 60%

Table: Joint probabilities

Questions:

▶ What is the probability of seeing cork trees in a farm with
vineyards?

▶ Among farms with cork trees or vineyards, what is the
probability of having both?
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Conditional probability

Let’s assume the following joint probabilties

Cork Trees
Yes No

Vineyard
Yes 25% 25%
No 25% 25%

We have that P(A ∩ B) = P(A) · P(B), meaning that they are
independent
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Law of total probability

Let B1,B2, . . . ,Bk ∈ B and P(Bi ) > 0 : i = 1, . . . , k. The law of
total probability states that

P(A) =
k∑

i=1

P(Bi )P(A|Bi ) (80)

The conditional law of total probability states that

P(A|C ) =
k∑

i=1

P(Bi |C )P(A|Bi ,C ) (81)
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Bayes’ Theorem

Let B1,B2, . . . ,Bk ∈ B, P(Bi ) > 0 : i = 1, . . . , k , and P(A) > 0.
Then Bayes’ Theorem states that for i = 1, . . . , k

P(Bi |A) =
P(Bi )P(A|Bi )∑k
j=1 P(Bj)P(A|Bj)

(82)

n.b. Can be proven using the def of conditional probability
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Bayes’ Theorem

Example: You test positive for disease X , which has 90%
sensitivity and a FPR of 10%. Past genetic screening has indicated
that you have a 1 in 10, 000 chance of having the disease. What is
the probability of having disease X?

P(B1|A) =
P(A|B1)P(B1)

P(A|B1)P(B1) + P(A|B2)P(B2)
(83)

=
(0.9)(0.0001)

(0.9)(0.0001) + (0.1)(0.9999)
= 0.0009 (84)

Notes:

▶ P(B1) is often referred to as the prior probability

▶ P(B1|A) is often referred to as the posterior probability
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Random variables

A random variable is a (Borel measureable) function
X : S → R

Example: For coin tossing, we have X : {Heads,Tails} → R,
where

X (s) =

{
1 if s = Heads

0 if s = Tails
(85)
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Cumulative distribution function

The cumulative distribution function (cdf) of a random variable X
is the function FX : R → [0, 1].

Example: For coin tossing, we have
X : {Heads,Tails} → R,

where

X (s) =

{
1 if s = Heads

0 if s = Tails
(86)

we have

FX (x) =


0 if x < 0
1
2 if 0 ≤ x < 1

1 if x ≥ 1

(87)
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Cumulative distribution function

n.b. We have two ways of thinking about probabilities:

1. Probability functions

2. Cumulative distribution functions

Question: Which one should we use?

The Correspondence Theorem: Let PX (·) and PY (·) be
probability functions and FX (·) and FY (·) be their associated cdfs.
Then

PX (·) = PY (·) ⇐⇒ FX (·) = FY (·) (88)
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Cumulative distribution function

Some properties for cdfs:

▶ lim
x⇒−∞

F (x) = 0

▶ lim
x⇒∞

F (x) = 1

▶ F (·) is non-decreasing

▶ F (·) is right-continuous
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Quantile function

Let X be a continuous rv and one-to-one over the the possible
values of X . Then

F−1(p) = inf{x ∈ R : p ≤ F (x)} (89)

Is the quantile function of X .

Let X be a discrete rv and
one-to-one over the the possible values of X . Then F−1(p) states
that we take the smallest value of x.

Example:
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Nature of random variables

A random variable X is

▶ Discrete if ∃ fX : R → [0, 1] ϶ FX (x) =
∑

t≤x fX (t), x ∈ R

▶ fX is referred to as the probability mass function (pmf)

▶ Continuous if ∃ fX : R → R+ ϶ FX (x) =
∫ x
−∞ fX (t)dt, x ∈ R

▶ fX is referred to as the probability density function (pdf).

▶ n.b. We can have multiple pdf’s consistent with the same cdf.

▶ n.b. For any specific value of a continuous random variable, its
probability is 0, i.e. P({x}) = 0∀x ∈ R.

n.b. pmf’s and pdf’s sum to 1, i.e.

▶ f : R → [0, 1] is the pmf of a discrete RV iff
∑

x∈R f (x) = 1

▶ f : R → R+ is the pdf of a continuous RV iff
∫∞
−∞ f (x)dx = 1
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Nature of random variables

Example #1: Coin tossing

FX (x) =


0 if x < 0
1
2 if 0 ≤ x < 1

1 if x ≥ 1

(90)

Here, FX is a step function with pmf

fX (x) =

{
1
2 x ∈ {0, 1}
0 otherwise

(91)
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Nature of random variables

Example #2: Uniform distribution on (0,1)

FX (x) =


0 if x < 0

x if 0 ≤ x < 1

1 if x ≥ 1

(92)

Here, FX is a continuous function. Two consistent pdfs
include

fX (x) =

{
1 x ∈ [0, 1]

0 otherwise
(93) fX (x) =

{
1 x ∈ (0, 1)

0 otherwise
(94)
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Transformations of random variables

Suppose Y = g(X ), where g : R → R and X is a discrete rv with
cdf FX .

Since the function is applied to a rv, Y is also a random variable
with probability function

fY (y) = PY (g(X ) = y) =
∑

x :g(x)=y

fX (x) (95)

Example:

Let X be a uniform random variable on {−n,−n + 1, ..., n − 1, n}.
Then Y = |X | has mass function

fY (y) =

{
1

2n+1 if x = 0
2

2n+1 if x ̸= 0
(96)

STATS 202: Data Mining and Analysis L. Tran 71/101



Transformations of random variables

Suppose Y = g(X ), where g : R → R and X is a discrete rv with
cdf FX .

Since the function is applied to a rv, Y is also a random variable
with probability function

fY (y) = PY (g(X ) = y) =
∑

x :g(x)=y

fX (x) (95)

Example:

Let X be a uniform random variable on {−n,−n + 1, ..., n − 1, n}.
Then Y = |X | has mass function

fY (y) =

{
1

2n+1 if x = 0
2

2n+1 if x ̸= 0
(96)

STATS 202: Data Mining and Analysis L. Tran 71/101



Transformations of random variables

Suppose Y = g(X ), where g : R → R and X is a discrete rv with
cdf FX .

Since the function is applied to a rv, Y is also a random variable
with probability function

fY (y) = PY (g(X ) = y) =
∑

x :g(x)=y

fX (x) (95)

Example:

Let X be a uniform random variable on {−n,−n + 1, ..., n − 1, n}.
Then Y = |X | has mass function

fY (y) =

{
1

2n+1 if x = 0
2

2n+1 if x ̸= 0
(96)

STATS 202: Data Mining and Analysis L. Tran 71/101



Transformations of random variables

Suppose Y = g(X ), where g : R → R and rv X with cdf FX .

Then Y is also a random variable with cdf

FY (y) = P(Y ≤ y) = P(g(X ) ≤ y) =

∫
x : g(x) ≤ yfX (x)dx

(97)
We can get the probability function by taking the derivative

fY (y) =
∂

∂y
FY (y) (98)

Example:
Let X be a uniform rv on [−1, 1]. Then Y = X 2 has cdf

FY (y) = PY (Y ≤ y) = PX (X
2 ≤ y) = PX (−y1/2X ≤ y1/2)

=

∫ y1/2

−y1/2
f (x)dx = y1/2

(99)

and fY (y) =
∂
∂y FY (y) =

1
2y1/2
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Affine transformations

Suppose Y = g(X ) = aX + b, a > 0, b ∈ R. Then

P(Y ≤ y) = P(aX + b ≤ y) = P

(
X ≤ y − b

a

)
= FX

(
y − b

a

)
(100)

If a < 0, then

P(Y ≤ y) = P(aX+b ≤ y) = P

(
X ≥ y − b

a

)
= 1−FX

(
y − b

a

)
(101)

In general, as long as the transformation Y = g(X ) is monotonic,
then

fY (y) = fX (g
−1(y))

∣∣∣∣ ∂∂y g−1(y)

∣∣∣∣ (102)
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Expectation

The expected value of rv X is defined as

E[X ] =

{∑
x xfX (x) if x is discrete∫
xfX (x)dx if x is continuous

(103)

For functions g of X ,

E[g(X )] =

{∑
x g(x)fX (x) if x is discrete∫
g(x)fX (x)dx if x is continuous

(104)

n.b. In general, E[g(X )] ̸= g(E[X ])
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Expectation

Examples:
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Expectation

Important: Expectations might not exist!

Example: Suppose fX (x) =
1
x2
, defined on [1,∞]. Then

E[X ] =

∫
xfX (x)dx =

∫
x
1

x2
dx =

∫
1

x
dx = ∞ (105)

Some properties of expectations:

▶ Linearity: E[ag(X ) + bh(X )] = E[ag(X )] + E[bh(X )]

▶ Order preserving:
g(X ) ≤ h(X ),∀x ∈ R ⇒ E[g(X )] ≤ E[h(X )]
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Variance

The variance of rv X is defined as

var(X ) = E[(X − µ)2] : µ = E[X ] (106)

Some notes:

▶ If E[X ] doesn’t exist then var(X ) doesn’t exist.

▶ var(X ) can be infinite.

▶ The standard deviation σ of X is
√
var(X ).
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Variance

With some algebra, we see that

var(X ) = E[(X − µ)2] (107)

= E[X 2 − 2Xµ+ µ2] (108)

= E[X 2]− E[2Xµ] + E[µ2] (109)

= E[X 2]− µ2 (110)

= E[X 2]− E[X ]2 (111)
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Variance

Some properties:

▶ If X is bounded, then var(X ) exists and is finite.

▶ var(X ) = 0 ⇐⇒ P(X = c) = 1 for some constant c .

▶ var(cX ) = c2var(X ) for some constant c .

▶ variance is linear, i.e. var(X1 + X2) = var(X1) + var(X2).
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Moments

The kth moment of rv X is defined as

E[X k ] = µ,
k : k ∈ N (112)

The kth central/centered moment of rv X is defined as

E[(X − µ)k ] = µk : k ∈ N (113)

Notes:

▶ µ,
k exists if and only if E[|X |k ] < ∞.

▶ If µ,
k exists, then for all j < k, µ,

j also exists.

▶ Variance is µ2.

▶ Skewness is µ3/σ
2.

▶ Kurtosis is µ4/σ
4.
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Moments

Example: Suppose X ∼ N(0, 1) ∋ fX (x) =
1√
2π

exp
(
− x2

2

)
.

µ,
1 = E[X ] =

∫
xfX (x)dx = fX (x)|∞−∞= 0 (114)

n.b. For the normal distribution, xfX (x) = − ∂
∂x fX (x).

µ2 = E[(X − µ)2] = E[(X − 0)2] = E[X 2] =

∫
x2fX (x)dx (115)

using integration by parts, we get∫
x2fX (x)dx = −xfX (x)|∞−∞︸ ︷︷ ︸

=0

+

∫ ∞

∞
fX (x)dx︸ ︷︷ ︸
=1

= 1 (116)
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Moment generating function

Moment generating functions (mgf) are used to calculate the
moments of a rv. The mgf of a rv X is a function MX : R ⇒ R+

such that
MX (t) = E[etX ] : t ∈ R (117)

Notes:

▶ The mgf is a function of t; X is integrated out by E.

▶ The mgf only applies if the moments of the rv exists.

▶ If two rv X ,Y have the same mgf (i.e. MX (t) = MY (t)),
then they have the same distribution.

▶ Even if a rv has moments, the mgf may yield infinity (e.g.
log-normal distribution).
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Moment generating function

Taking the derivative of the mgf, we see that

∂

∂t
MX (t) =

∂

∂t

∫
etx fX (x)dx =

∫
x · etx fX (x)dx (118)

What happens when t = 0?

∫
x · etx fX (x)dx =

∫
xfX (x)dx = E[X ] (119)

What happens when t = 0 for the kth derivative?

∂

∂tk
MX (t) =

∫
xk · etx fX (x)dx (120)

At t = 0, we get ∂
∂tk

MX (t)|t=0= E[X k ]

Evaluating the kth derivative at t = 0 gives us the kth

moment of X .
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Moment generating function

Example: The standard normal distribution

MX (t) = E[etX ] =
∫

etX fX (x)dx (121)

=

∫
etX

1√
2π

exp

(
−x2

2

)
dx (122)

=

∫
1√
2π

exp

(
−(x − t)2

2

)
exp

(
t2

2

)
dx (123)

= exp

(
t2

2

)∫
1√
2π

exp

(
−(x − t)2

2

)
dx (124)

= exp

(
t2

2

)
(125)
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Moment generating function

The mgf for affine transformations is straight forward,
e.g. If Y = aX + b, then MY (t) = ebtMX (at).

Example: Let X = µ+ σZ : Z ∼ N(0, 1). Then

MX (t) = Mµ+σZ (t) = eµtMZ (σt) = eµte
1
2
σ2t2 = eµt+

1
2
σ2t2

(126)

Another example:

Let X1, . . . ,Xn
iid∼ P0 and Y =

∑n
i=1 Xi . Then

MY (t) = E[etY ] = E[et(X1+···+Xn)] = E

[
n∏

i=1

etXi

]
(127)

=
n∏

i=1

E
[
etXi

]
=

n∏
i=1

MXi
(t) (128)
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MX (t) = Mµ+σZ (t) = eµtMZ (σt) = eµte
1
2
σ2t2 = eµt+

1
2
σ2t2

(126)
Another example:

Let X1, . . . ,Xn
iid∼ P0 and Y =

∑n
i=1 Xi . Then

MY (t) = E[etY ] = E[et(X1+···+Xn)] = E

[
n∏

i=1

etXi

]
(127)

=
n∏

i=1

E
[
etXi

]
=

n∏
i=1

MXi
(t) (128)
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Distributions

Most useful distributions have names, e.g.

▶ Normal distribution

▶ Uniform distribution

▶ Bernoulli distribution

▶ Binomial distribution

▶ Poisson distribution

▶ Gamma distribution
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Normal distribution

A rv X follows a Normal distribution, denoted as X ∼ N(µ, σ2)
with mean µ and variance σ2, if X is continuous with pdf

fX (x) =
1√
2πσ2

exp

(
−(x − µ)2

2σ2

)
: x ∈ R (129)

Note:
If Z ∼ N(0, 1) then X = µ+ σZ ∼ N(µ, σ2). It follows that
▶ E[X ] = E[µ+ σZ ] = µ+ σE[Z ] = µ.
▶ var(X ) = var(µ+ σZ ) = σ2var(Z ) = σ2.

Most well known distribution due to:

1. Good mathematical properties

2. Often (approximately) observed in the real world (e.g.
heights, weights, etc.)

3. Central limit theorem
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Central limit theorem

Let X1, . . . ,Xn
iid∼ P0, where E[Xi ] = µ and var(Xi ) = σ2.

Then

lim
n→∞

P

(
n1/2(X̄n − µ)

σ
≤ x

)
= Φ(x) (130)

where Φ(x) is the cdf for the standard normal distribution.

Example: The sample mean

X̄n =
1

n

n∑
i=1

Xi (131)

The 95% CI: X̄n ± zα/2ŝen
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Uniform distribution

A rv X follows a Uniform distribution U(a, b) if X is continuous
with pdf

fX (x) =

{
1

b−a x ∈ [a, b]

0 otherwise
(132)

Under U(a, b), all observations are “equally likely”

E[X ] = a+b
2 , var(X ) = (b−a)2

12 , and MX (t) =
ebt−eat

(b−a)t .

Note: if X ∼ U(a, b), then X = (b − a)X̃ + a : X̃ ∼ U(0, 1)
and

fX̃ (x) =

{
1 x ∈ [0, 1]

0 otherwise
(133)
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Bernoulli distribution

A rv X follows a Bernoulli distribution Ber(p) if X is discrete with
pmf

fX (x) =


p if x = 1

1− p if x = 0

0 otherwise

(134)

E[X ] = p, var(X ) = p(1− p), and MX (t) = etp + (1− p).
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Binomial distribution

A rv X follows a Binomial distribution Bin(n, p) if X is discrete
with pmf

fX (x) =

{(n
x

)
px(1− p)n−x if x ∈ {0, 1, ..., n}

0 otherwise
(135)

E[X ] = np, var(X ) = np(1− p), and
MX (t) = (etp + (1− p))n.

If X1, ...,Xn
iid∼ Ber(p), then Y = X1 + · · ·+ Xn follows

B(n, p).
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Negative Binomial distribution

A rv X follows a Negative Binomial distribution NB(r , p) if X is
discrete with pmf

fX (x) =

{(r+x−1
x

)
px(1− p)r if x ∈ {0, 1, ..., n}

0 otherwise
(136)

E[X ] = r(1−p)
p , var(X ) = r(1−p)

p2
, and

MX (t) =
(

p
1−qet

)r
: t < log

(
1
q

)
.

When r = 1, we refer to it as the Geometric distribution.

▶ It has a memoryless property.
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Poisson distribution

A rv X follows a Poisson distribution Pois(λ) if X is discrete with
pmf

fX (x) =

{
e−λ λx

x! x ∈ N
0 otherwise

(137)

E[X ] = λ, var(X ) = λ, and MX (t) = eλ(e
t−1).

Some notes:

▶ Bin(n, p) ≈ Pois(np) when n is large and np is small.

▶ “Poisson Processes” are typically used to model rates,
e.g. mortality rates

1. The number of events in each fixed time interval t has a
Poisson distribution with mean λt.

2. The number of events in each time interval is independent.
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Gamma distribution

A rv X follows a Gamma distribution Gamma(α, β) if X is
continuous with pdf

fX (x) =

{
1

Γ(α)βα x
α−1e−

x
β x > 0

0 otherwise
(138)

where Γ(x) =
∫∞
0 tα−1e−tdt : α > 0.

E[X ] = αβ, var(X ) = αβ2, and

MX (t) =
(
1− t

β

)−α
: t < β.

Notes:

▶ 1
Γ(α)βα is often referred to as the ‘normalizing constant’.

▶ When α = 1, we get the exponential distribution.
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Beta distribution

A rv X follows a Beta distribution Beta(α, β) if X is continuous
with pdf

fX (x) =

{
Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1 0 < x < 1

0 otherwise
(139)

E[X ] = α
α+β , var(X ) = αβ

(α+β)2(α+β+1)
, and

MX (t) =
Γ(α+β)
Γ(α)Γ(β)

∫ 1
0 xα+k−1(1− x)β−1dx .

n.b. Very popular distribution in Bayesian statistics.
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Multinomial distribution

Suppose rv X = (X1, ...,Xk) represents counts of k different
classes. Then it follows a Multinomial distribution Multi(p1, ..., pk)
if it has pdf

fX (x) =

{( n
x1,...,xk

)
px11 · · · pxkk x1 ≥ 0, ..., xk ≥ 0

0 otherwise
(140)

where n =
∑k

i=1 Xi .

E[Xi ] = np, var(Xi ) = npi (1− pi ), and
Cov(Xi ,Xj) = −npipj .
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Dirac delta function

While not technically a pdf, often used for e.g. mixture of discrete
distributions

The Dirac delta function is defined as δ : R → R ∪∞ ∋

δ(x) =

{
+∞ x = 0

0 otherwise
(141)

and
∫∞
−∞ δ(x)dx = 1

The sifting property:∫
f (x)δ(x − a)dx = f (a) (142)
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Dirac delta function

Example: Let

Y =

{
1 w.p. α

U(0, 1) w.p. 1− α
(143)

Then fY (y) = αδ(y − 1) + (1− α)I(y ∈ [0, 1])

E[Y ] =

∫ ∞

∞
y(αδ(y − 1) + (1− α)I(y ∈ [0, 1]))dy (144)

= α

∫ ∞

∞
y(δ(y − 1)dy + (1− α)

∫ 1

0
ydy (145)

= α+ (1− α)
y2

2
|10 (146)

= α+
1− α

2
(147)

=
1 + α

2
(148)
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