Section 1: Probability, Statistics, \& Linear Algebra review
 STATS 202: Data Mining and Analysis

Linh Tran
tranlm@stanford.edu

Department of Statistics
Stanford University

June 30, 2023

Outline

- Linear algebra
- Basic concepts
- Matrix multiplication
- Operations and Properties
- Matrix Calculus
- Probability
- Sample space
- Probability function
- Probability space
- Random variables
- Statistics
- Expected value
- Moments \& Moment generating functions
- Distributions

Linear algebra

Basic concepts

Consider the following equations:

$$
\begin{align*}
4 x_{1}-5 x_{2} & =-13 \tag{1}\\
-2 x_{1}+3 x_{2} & =9 \tag{2}
\end{align*}
$$

Let's solve for x_{1} and x_{2}.

Basic concepts

Consider the following equations:

$$
\begin{align*}
4 x_{1}-5 x_{2} & =-13 \tag{1}\\
-2 x_{1}+3 x_{2} & =9 \tag{2}
\end{align*}
$$

Let's solve for x_{1} and x_{2}.
We can write this system of equations more compactly in matrix notation, e.g.

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{3}
\end{equation*}
$$

where $\mathbf{A}=\left[\begin{array}{cc}4 & -5 \\ -2 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}-13 \\ 9\end{array}\right]$

Basic concepts

Some basic notation:

- We denote a matrix with m rows and n columns as $\mathbf{A} \in \mathbb{R}^{m \times n}$, where each entry in the matrix is a real number.
- We denote a vector with n entries as $\mathbf{x} \in \mathbb{R}^{n}$.
- By convention, we typically think of a vector as a 1 column matrix.
- We denote the $i^{\text {th }}$ element of a vector \mathbf{x} as x_{i}, e.g.

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \tag{4}\\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Basic concepts

Some basic notation:

- We denote each entry in a matrix \mathbf{A} by $a_{i j}$, corresponding to the $i^{\text {th }}$ row and $j^{\text {th }}$ column, e.g.

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{5}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

- We denote the transpose of a matrix as \mathbf{A}^{\top}, e.g.

$$
\mathbf{A}^{\top}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \tag{6}\\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right]
$$

Basic concepts

Some basic notation:

- We denote the $j^{\text {th }}$ column of \mathbf{A} by \mathbf{a}_{j} or $\mathbf{A}_{. j}$, e.g.

$$
\mathbf{A}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \tag{7}\\
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

- We denote the $i^{\text {th }}$ row of \mathbf{A} by \mathbf{a}_{i}^{\top} or \mathbf{A}_{i}..

$$
\mathbf{A}=\left[\begin{array}{ccc}
- & \mathbf{a}_{1}^{\top} & - \tag{8}\\
- & \mathbf{a}_{2}^{\top} & - \\
& \vdots & \\
- & \mathbf{a}_{m}^{\top} & -
\end{array}\right]
$$

n.b. This isn't universal, though should be clear from its presentation and use.

Matrix multiplication

Given two matrices $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$, we can multiply them by

$$
\begin{equation*}
\mathbf{C}=\mathbf{A B} \in \mathbb{R}^{m \times p}: \mathbf{C}_{i j}=\sum_{k=1}^{n} \mathbf{A}_{i k} \mathbf{B}_{k j} \tag{9}
\end{equation*}
$$

n.b. The dimensions have to be compatible for matrix multiplication to be valid (e.g. the number of columns in \mathbf{A} must be equal to the number of rows in \mathbf{B}).

Matrix multiplication

Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, the quantity $\mathbf{x}^{\top} \mathbf{y} \in \mathbb{R}$ (aka dot product or inner product) is a scalar given by

$$
\mathbf{x}^{\top} \mathbf{y}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \tag{10}\\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{i=1}^{n} x_{i} y_{i}
$$

Note: For vectors, we always have that $\mathbf{x}^{\top} \mathbf{y}=\mathbf{y}^{\top} \mathbf{x}$. This is not generally true for matrices.

Matrix multiplication

Given $\mathbf{x} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{n}$, the quantity $\mathbf{x}^{\top} \mathbf{y} \in \mathbb{R}^{m \times n}$ (aka outer product) is a matrix given by

$$
\mathbf{x y}^{\top}=\left[\begin{array}{c}
x_{1} \tag{11}\\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\left[\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \cdots & x_{1} y_{n} \\
x_{2} y_{1} & x_{2} y_{2} & \cdots & x_{2} y_{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m} y_{1} & x_{m} y_{2} & \cdots & x_{m} y_{n}
\end{array}\right]
$$

Matrix multiplication

Example: Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a matrix such that all columns are equal to some vector $\mathbf{x} \in \mathbb{R}^{m}$. Using outer products, we can represent A compactly as

$$
\begin{align*}
\mathbf{A}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{x} & \mathbf{x} & \cdots & \mathbf{x} \\
\mid & \mid & & \mid
\end{array}\right] & =\left[\begin{array}{cccc}
x_{1} & x_{1} & \cdots & x_{1} \\
x_{2} & x_{2} & \cdots & x_{2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m} & x_{m} & \cdots & x_{m}
\end{array}\right] \tag{12}\\
& =\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right] \tag{13}\\
& =\mathbf{x 1}^{\top} \tag{14}
\end{align*}
$$

Matrix-vector products

Given $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^{n}$, their product is a vector $\mathbf{y}=\mathbf{A} \mathbf{x} \in \mathbb{R}^{m}$.

Matrix-vector products

Given $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^{n}$, their product is a vector $\mathbf{y}=\mathbf{A} \mathbf{x} \in \mathbb{R}^{m}$.

There are two ways of interpreting this:

$$
\begin{align*}
\mathbf{y}=\mathbf{A} \mathbf{x} & =\left[\begin{array}{ccc}
- & \mathbf{a}_{1}^{\top} & - \\
- & \mathbf{a}_{2}^{\top} & - \\
\vdots & \\
- & \mathbf{a}_{m}^{\top} & -
\end{array}\right] \mathbf{x}=\left[\begin{array}{c}
\mathbf{a}_{1}^{\top} \mathbf{x} \\
\mathbf{a}_{2}^{\top} \mathbf{x} \\
\vdots \\
\mathbf{a}_{m}^{\top} \mathbf{x}
\end{array}\right] \tag{15}\\
& =\left[\begin{array}{cccc}
\mid & \mid & \mid \\
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right] \tag{16}\\
& =\mathbf{a}_{1} x_{1}+\mathbf{a}_{2} x_{2}+\cdots+\mathbf{a}_{n} x_{n} \tag{17}
\end{align*}
$$

Matrix-vector products

Example:

Define $\mathbf{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12\end{array}\right], \mathbf{x}=\left[\begin{array}{l}-3 \\ -2 \\ -1\end{array}\right]$.
Calculate $\mathbf{y}=\mathbf{A x}$.

Matrix-matrix products

Given $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$, their product is a matrix $\mathbf{C}=\mathbf{A B} \in \mathbb{R}^{m \times p}$.

Matrix-matrix products

Given $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$, their product is a matrix $\mathbf{C}=\mathbf{A B} \in \mathbb{R}^{m \times p}$.

Similar to before, we can think of this in two ways:
Interpretation \# 1

$$
\begin{align*}
\mathbf{C}=\mathbf{A B} & =\left[\begin{array}{ccc}
- & \mathbf{a}_{1}^{\top} & - \\
- & \mathbf{a}_{2}^{\top} & - \\
& \vdots & \\
- & \mathbf{a}_{m}^{\top} & -
\end{array}\right]\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p} \\
\mid & \mid & & \mid
\end{array}\right] \tag{18}\\
& =\left[\begin{array}{cccc}
\mathbf{a}_{1}^{\top} \mathbf{b}_{1} & \mathbf{a}_{1}^{\top} \mathbf{b}_{2} & \cdots & \mathbf{a}_{1}^{\top} \mathbf{b}_{p} \\
\mathbf{a}_{2}^{\top} \mathbf{b}_{1} & \mathbf{a}_{2}^{\top} \mathbf{b}_{2} & \cdots & \mathbf{a}_{2}^{\top} \mathbf{b}_{p} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{a}_{m}^{\top} \mathbf{b}_{1} & \mathbf{a}_{m}^{\top} \mathbf{b}_{2} & \cdots \mathbf{a}_{m}^{\top} \mathbf{b}_{p} &
\end{array}\right] \tag{19}
\end{align*}
$$

Matrix-matrix products

Interpretation \# 2

$$
\begin{align*}
\mathbf{C}=\mathbf{A B} & =\mathbf{A}\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p} \\
\mid & \mid & & \mid
\end{array}\right] \tag{20}\\
& =\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{A} \mathbf{b}_{1} & \mathbf{A} \mathbf{b}_{2} & \cdots & \mathbf{A \mathbf { b } _ { p }} \\
\mid & \mid &
\end{array}\right] \tag{21}\\
& =\left[\begin{array}{lll}
- & \mathbf{a}_{1}^{\top} & - \\
- & \mathbf{a}_{2}^{\top} & - \\
& \vdots & \mathbf{B}=\left[\begin{array}{ccc}
- & \mathbf{a}_{1}^{\top} \mathbf{B} & - \\
- & \mathbf{a}_{2}^{\top} \mathbf{B} & - \\
- & \mathbf{a}_{m}^{\top} & -
\end{array}\right]
\end{array}\right] \tag{22}
\end{align*}
$$

Matrix multiplication properties

- Associative: $(A B) C=A(B C)$
- Distributive: $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$
- Not commutative: $\mathbf{A B} \neq \mathrm{BA}$

Matrix multiplication properties

Demonstrating associativity:
We just need to show that $((\mathbf{A B}) \mathbf{C})_{i j}=(\mathbf{A}(\mathbf{B C}))_{i j}$:

$$
\begin{align*}
((\mathbf{A B}) \mathbf{C})_{i j} & =\sum_{k=1}^{p}(\mathbf{A B})_{i k} \mathbf{C}_{k j}=\sum_{k=1}^{p}\left(\sum_{l=1}^{n} \mathbf{A}_{i l} \mathbf{B}_{l k}\right) \mathbf{C}_{k j} \tag{23}\\
& =\sum_{k=1}^{p}\left(\sum_{l=1}^{n} \mathbf{A}_{i l} \mathbf{B}_{l k} \mathbf{C}_{k j}\right)=\sum_{l=1}^{n}\left(\sum_{k=1}^{p} \mathbf{A}_{i l} \mathbf{B}_{l k} \mathbf{C}_{k j}\right) \\
& =\sum_{l=1}^{n} \mathbf{A}_{i l}\left(\sum_{k=1}^{p} \mathbf{B}_{l k} \mathbf{C}_{k j}\right)=\sum_{l=1}^{n} \mathbf{A}_{i l}(\mathbf{B C})_{l j} \tag{25}\\
& =(\mathbf{A}(\mathbf{B C}))_{i j} \tag{26}
\end{align*}
$$

Operations \& properties

The identity matrix:
The identity matrix, denoted $\mathbf{I} \in \mathbb{R}^{n \times n}$ is a square matrix with 1 's in the diagonal and 0 's everywhere else, i.e.

$$
\mathbf{I}_{i j}= \begin{cases}1 & i=j \tag{27}\\ 0 & i \neq j\end{cases}
$$

Operations \& properties

The identity matrix:

The identity matrix, denoted $\mathbf{I} \in \mathbb{R}^{n \times n}$ is a square matrix with 1 's in the diagonal and 0 's everywhere else, i.e.

$$
\mathbf{I}_{i j}= \begin{cases}1 & i=j \tag{27}\\ 0 & i \neq j\end{cases}
$$

It has the property

$$
\begin{equation*}
\mathbf{A} \mathbf{I}=\mathbf{A}=\mathbf{I} \mathbf{A} \forall \mathbf{A} \in \mathbb{R}^{m \times n} \tag{28}
\end{equation*}
$$

n.b. The dimensionality of \mathbf{I} is typically inferred (e.g. $n \times n$ vs $m \times m$)

Operations \& properties

The diagonal matrix: The diagonal matrix, denoted $\mathbf{D}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a matrix where all non-diagonal elements are 0, i.e.

$$
\mathbf{D}_{i j}= \begin{cases}d_{i} & i=j \tag{29}\\ 0 & i \neq j\end{cases}
$$

Clearly, $\mathbf{I}=\operatorname{diag}(1,1, \ldots, 1)$.

The transpose

The transpose of a matrix results from "flipping" the rows and columns, i.e.

$$
\begin{equation*}
\left(\mathbf{A}^{\top}\right)_{i j}=\mathbf{A}_{j i} \tag{30}
\end{equation*}
$$

Consequently, for $\mathbf{A} \in \mathbb{R}^{m \times n}$ we have that $\mathbf{A}^{\top} \in \mathbb{R}^{n \times m}$.
Some properties:

- $\left(\mathbf{A}^{\top}\right)^{\top}=\mathbf{A}$
- $(\mathbf{A B})^{\top}=\mathbf{B}^{\top} \mathbf{A}^{\top}$
- $(\mathbf{A}+\mathbf{B})^{\top}=\mathbf{A}^{\top}+\mathbf{B}^{\top}$

Symmetry

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\mathbf{A}=\mathbf{A}^{\top}$. It is anti-symmetric if $\mathbf{A}=-\mathbf{A}^{\top}$.

Symmetry

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\mathbf{A}=\mathbf{A}^{\top}$.
It is anti-symmetric if $\mathbf{A}=-\mathbf{A}^{\top}$.
It is easy to show that $\mathbf{A}+\mathbf{A}^{\top}$ is symmetric and $\mathbf{A}-\mathbf{A}^{\top}$ is anti-symmetric. Consequently, we have that

$$
\begin{equation*}
\mathbf{A}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\top}\right)+\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\top}\right) \tag{31}
\end{equation*}
$$

Symmetry

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\mathbf{A}=\mathbf{A}^{\top}$.
It is anti-symmetric if $\mathbf{A}=-\mathbf{A}^{\top}$.
It is easy to show that $\mathbf{A}+\mathbf{A}^{\top}$ is symmetric and $\mathbf{A}-\mathbf{A}^{\top}$ is anti-symmetric. Consequently, we have that

$$
\begin{equation*}
\mathbf{A}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\top}\right)+\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{\top}\right) \tag{31}
\end{equation*}
$$

Symmetric matrices tend to be denoted as $\mathbf{A} \in \mathbb{S}^{n}$.

The trace of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, denoted $\operatorname{tr}(\mathbf{A})$ or $\operatorname{tr} \mathbf{A}$ is the sum of the diagonal elements, i.e.

$$
\begin{equation*}
\operatorname{tr} \mathbf{A}=\sum_{i=1}^{n} \mathbf{A}_{i i} \tag{32}
\end{equation*}
$$

The trace has the following properties:

- For $\mathbf{A} \in \mathbb{R}^{n \times n}, \operatorname{tr} \mathbf{A}=\operatorname{tr} \mathbf{A}^{\top}$
- For $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}, \operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr} \mathbf{A}+\operatorname{tr} \mathbf{B}$
- For $\mathbf{A} \in \mathbb{R}^{n \times n}, c \in \mathbb{R}, \operatorname{tr}(c \mathbf{A})=c \operatorname{tr} \mathbf{A}$
- For $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ э $\mathbf{A B} \in \mathbb{R}^{n \times n}, \operatorname{tr} \mathbf{A B}=\operatorname{tr} \mathbf{B} \mathbf{A}$
- For $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbb{R}^{n \times n}{ }_{\text {э }} \mathbf{A B C} \in \mathbb{R}^{n \times n}$, $\operatorname{tr} \mathbf{A B C}=\operatorname{tr} \mathbf{B C A}=\operatorname{tr} \mathbf{C} \mathbf{A B}$, and so on for more matrices

Example: Proving that $\operatorname{tr} \mathbf{A B}=\operatorname{tr} \mathbf{B} \mathbf{A}$

$$
\begin{align*}
\operatorname{tr} \mathbf{A} \mathbf{B} & =\sum_{i=1}^{m}(\mathbf{A B})_{i i}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} \mathbf{A}_{i j} \mathbf{B}_{j i}\right) \tag{33}\\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{A}_{i j} \mathbf{B}_{j i}=\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{B}_{j i} \mathbf{A}_{i j} \tag{34}\\
& =\sum_{i=1}^{m}\left(\sum_{j=1}^{n} \mathbf{B}_{j i} \mathbf{A}_{i j}\right)=\sum_{j=1}^{n}(\mathbf{B A})_{j j} \tag{35}\\
& =\operatorname{tr} \mathbf{B} \mathbf{A} \tag{36}
\end{align*}
$$

Norms

A norm of a vector \mathbf{x}, denoted $\|\mathbf{x}\|$ is a measure of the "length" of the vector. For example, the ℓ_{2}-norm (aka Euclidean norm) is

$$
\begin{equation*}
\|\mathbf{x}\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \tag{37}
\end{equation*}
$$

n.b. $\|\mathbf{x}\|_{2}^{2}=\mathbf{x}^{\top} \mathbf{x}$, i.e. the squared norm of a vector is the dot product with itself.

Norms

A norm of a vector \mathbf{x}, denoted $\|\mathbf{x}\|$ is a measure of the "length" of the vector. For example, the ℓ_{2}-norm (aka Euclidean norm) is

$$
\begin{equation*}
\|\mathbf{x}\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \tag{37}
\end{equation*}
$$

n.b. $\|\mathbf{x}\|_{2}^{2}=\mathbf{x}^{\top} \mathbf{x}$, i.e. the squared norm of a vector is the dot product with itself.

Other norms:

- ℓ_{1}-norm, i.e. $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$.
- ℓ_{∞}-norm, i.e. $\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$.
$-\ell_{p}$-norm, i.e. $\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$.

Norms

Formally, a norm is any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying four properties:

1. $\forall \mathbf{x} \in \mathbb{R}^{n}, f(\mathbf{x}) \geq 0$ (non-negativity).
2. $f(\mathbf{x})=0$ iff $\mathbf{x}=0$ (definiteness).
3. $\forall \mathbf{x} \in \mathbb{R}^{n}, c \in \mathbb{R}, f(c \mathbf{x})=|c| f(\mathbf{x})$ (homogeneity).
4. $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, f(\mathbf{x}+\mathbf{y}) \leq f(\mathbf{x})+f(\mathbf{y})$ (triangle inequality).

Norms

Formally, a norm is any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying four properties:

1. $\forall \mathbf{x} \in \mathbb{R}^{n}, f(\mathbf{x}) \geq 0$ (non-negativity).
2. $f(\mathbf{x})=0$ iff $\mathbf{x}=0$ (definiteness).
3. $\forall \mathbf{x} \in \mathbb{R}^{n}, c \in \mathbb{R}, f(c \mathbf{x})=|c| f(\mathbf{x})$ (homogeneity).
4. $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, f(\mathbf{x}+\mathbf{y}) \leq f(\mathbf{x})+f(\mathbf{y})$ (triangle inequality).

Norms can also be defined for matrices, e.g. The Frobenius norm,

$$
\begin{equation*}
\|\mathbf{A}\|^{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{A}_{i j}^{2}}=\sqrt{\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{A}\right)} \tag{38}
\end{equation*}
$$

Linear independence

A set of vectors $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\} \in \mathbb{R}^{m}$ is (linearly) dependent if one of the vectors \mathbf{x}_{i} can be represented as a linear combination of the remaining vectors, i.e.

$$
\begin{equation*}
\mathbf{x}_{n}=\sum_{i=1}^{n-1} \alpha_{i} \mathbf{x}_{i} \tag{39}
\end{equation*}
$$

for some scalar values $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1} \in \mathbb{R}$

Linear independence

A set of vectors $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\} \in \mathbb{R}^{m}$ is (linearly) dependent if one of the vectors \mathbf{x}_{i} can be represented as a linear combination of the remaining vectors, i.e.

$$
\begin{equation*}
\mathbf{x}_{n}=\sum_{i=1}^{n-1} \alpha_{i} \mathbf{x}_{i} \tag{39}
\end{equation*}
$$

for some scalar values $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1} \in \mathbb{R}$
Example: Let

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \tag{40}\\
2 \\
3
\end{array}\right] \quad \mathbf{x}_{2}=\left[\begin{array}{l}
4 \\
1 \\
5
\end{array}\right] \quad \mathbf{x}_{3}=\left[\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right]
$$

Is $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ linearly independent?

Rank

The column rank of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the largest subset of columns of A that are linearly independent.

- The column rank is always $\leq n$.

The row rank of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the largest subset of rows of \mathbf{A} that are linearly independent.

- The row rank is always $\leq m$.

The column rank of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the largest subset of columns of A that are linearly independent.

- The column rank is always $\leq n$.

The row rank of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the largest subset of rows of \mathbf{A} that are linearly independent.

- The row rank is always $\leq m$.
n.b. Column rank is always equal to row rank. Thus, we refer to both as the rank of the matrix.
- For $\mathbf{A} \in \mathbb{R}^{m \times n}$, if $\operatorname{rank}(\mathbf{A})=\min (m, n)$, then \mathbf{A} is said to be of full rank.
- For $\mathbf{A} \in \mathbb{R}^{m \times n}, \operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{\top}\right.$.
- For $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$, $\operatorname{rank}(\mathbf{A B}) \leq \min (\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B}))$.
- For $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}, \operatorname{rank}(\mathbf{A}+\mathbf{B}) \leq \operatorname{rank}(\mathbf{A})+\operatorname{rank}(\mathbf{B})$

Matrix inverse

The inverse of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is denoted \mathbf{A}^{-1}, and is unique such that

$$
\begin{equation*}
\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}=\mathbf{A A}^{-1} \tag{41}
\end{equation*}
$$

Matrix inverse

The inverse of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is denoted \mathbf{A}^{-1}, and is unique such that

$$
\begin{equation*}
\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}=\mathbf{A A}^{-1} \tag{41}
\end{equation*}
$$

n.b. Not all matrices have inverses (e.g. $m \times n$ matrices).

Def:
A is invertible or non-singular if \mathbf{A}^{-1} exists.
Otherwise, it is non-invertible or singular.

1. $\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}$
2. $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$
3. $\left(\mathbf{A}^{-1}\right)^{\top}=\left(\mathbf{A}^{\top}\right)^{-1}$

- This matrix is sometimes denoted $\mathbf{A}^{-\top}$

Orthogonal Matrices

Def:

- A vector $\mathbf{x} \in \mathbb{R}^{n}$ is normalized if $\|\mathbf{x}\|_{2}=1$
- Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are orthogonal if $\mathbf{x}^{\top} \mathbf{y}=0$
- A square matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ is orthogonal or orthonormal if all its columns are:

1. Orthogonal to each other
2. Normalized

We therfore have that

$$
\begin{equation*}
\mathbf{U}^{\top} \mathbf{U}=\mathbf{I}=\mathbf{U} \mathbf{U}^{\top} \tag{42}
\end{equation*}
$$

Orthogonal Matrices

Def:

- A vector $\mathbf{x} \in \mathbb{R}^{n}$ is normalized if $\|\mathbf{x}\|_{2}=1$
- Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are orthogonal if $\mathbf{x}^{\top} \mathbf{y}=0$
- A square matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ is orthogonal or orthonormal if all its columns are:

1. Orthogonal to each other
2. Normalized

We therfore have that

$$
\begin{equation*}
\mathbf{U}^{\top} \mathbf{U}=\mathbf{I}=\mathbf{U} \mathbf{U}^{\top} \tag{42}
\end{equation*}
$$

Another nice property:

$$
\begin{equation*}
\|\mathbf{U x}\|_{2}=\|\mathbf{x}\|_{2} \forall \mathbf{x} \in \mathbb{R}^{n}, \mathbf{U} \in \mathbb{R}^{n \times n} \text { orthogonal } \tag{43}
\end{equation*}
$$

Range

Def:

The span of a set of vectors $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$ is

$$
\begin{equation*}
\operatorname{span}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}\right)=\left\{v: v=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}, \alpha_{i} \in \mathbb{R}\right\} \tag{44}
\end{equation*}
$$

Range

Def:

The span of a set of vectors $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$ is

$$
\begin{equation*}
\operatorname{span}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}\right)=\left\{v: v=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}, \alpha_{i} \in \mathbb{R}\right\} \tag{44}
\end{equation*}
$$

n.b. If $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$ is linearly independent, then $\operatorname{span}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}\right)=\mathbb{R}^{n}$.

Example:

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \tag{45}\\
0
\end{array}\right] \quad \mathbf{x}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Projection

Def:
The projection of a vector $\mathbf{y} \in \mathbb{R}^{m}$ onto $\operatorname{span}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}\right)=\mathbb{R}^{n}$ is

$$
\begin{equation*}
\operatorname{Proj}\left(\mathbf{y} ;\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}\right)=\underset{\mathbf{v} \in \operatorname{span}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}\right)}{\arg \min }\|\mathbf{y}-\mathbf{v}\|_{2} \tag{46}
\end{equation*}
$$

Range

Def:

The range of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, denoted $\mathcal{R}(\mathbf{A})$ is the span of the columns of A, i.e.

$$
\begin{equation*}
\mathcal{R}(\mathbf{A})=\left\{\mathbf{v} \in \mathbb{R}^{m}: \mathbf{v}=\mathbf{A} \mathbf{x}, \mathbf{x} \in \mathbb{R}^{n}\right\} \tag{47}
\end{equation*}
$$

Assuming that \mathbf{A} is full rank and $n<m$, the projection of $\mathbf{y} \in \mathbb{R}^{m}$ onto $\mathcal{R}(\mathbf{A})$ is

$$
\begin{align*}
\operatorname{Proj}(\mathbf{y} ; \mathbf{A}) & =\underset{\mathbf{v} \in \mathcal{R}(\mathbf{A})}{\arg \min }\|\mathbf{v}-\mathbf{y}\|_{2} \tag{48}\\
& =\mathbf{A}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \mathbf{y}
\end{align*}
$$

Nullspace

Def:

The nullspace of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, denoted $\mathcal{N}(\mathbf{A})$ is the set of all vectors that equal 0 when multiplied by \mathbf{A}, i.e.

$$
\begin{equation*}
\mathcal{N}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A} \mathbf{x}=0\right\} \tag{50}
\end{equation*}
$$

Some properties:

- $\left\{w: w=u+v, u \in \mathcal{R}\left(\mathbf{A}^{\top}\right), v \in \mathcal{R}(\mathbf{A})\right\}=\mathbb{R}^{n}$
- $\mathcal{R}\left(\mathbf{A}^{\top}\right) \bigcap \mathcal{N}(\mathbf{A})=\{\mathbf{0}\}$

This is referred to as orthogonal complements, denoted as $\mathcal{R}\left(\mathbf{A}^{\top}\right)=\mathcal{N}(\mathbf{A})^{\perp}$

Determinant

Def:

The determinant of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, denoted $|\mathbf{A}|$ or det \mathbf{A} is a function det: $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$.

Let $\mathbf{A}_{\backslash i, \backslash j} \in \mathbb{R}^{(n-1) \times(n-1)}$ be the matrix that results from deleting the $i^{t h}$ row and $j^{\text {th }}$ column. The general (recursive) formula for the determinant is

$$
\begin{align*}
|\mathbf{A}| & =\sum_{i=1}^{n}(-1)^{i+j} a_{i j}\left|\mathbf{A}_{\backslash i, \backslash j}\right| & (\forall j \in 1, \ldots, n) \tag{51}\\
& =\sum_{j=1}^{n}(-1)^{i+j} a_{i j}\left|\mathbf{A}_{\backslash i, \backslash j}\right| & (\forall i \in 1, \ldots, n)
\end{align*}
$$

Determinant

Given a matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
- & \mathbf{a}_{1}^{\top} & - \tag{52}\\
- & \mathbf{a}_{2}^{\top} & - \\
& \vdots & \\
- & \mathbf{a}_{n}^{\top} & -
\end{array}\right]
$$

and a set $\mathbf{S} \subset \mathbb{R}^{n}$,

$$
\begin{equation*}
\mathbf{S}=\left\{\mathbf{v} \in \mathbb{R}^{n}: v=\sum_{i=1}^{n} \alpha_{i} \mathbf{a}_{i} \text { where } 0 \leq \alpha_{i} \leq 1, i=1, \ldots, n\right\} \tag{53}
\end{equation*}
$$

$|\mathbf{A}|$ is the volume of \mathbf{S}.

Determinant

Example:

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 3 \tag{54}\\
3 & 2
\end{array}\right]
$$

Determinant

The matrix rows are:

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \tag{55}\\
3
\end{array}\right] \quad \mathbf{a}_{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

And $|\mathbf{A}|=-7$

Determinant

The matrix rows are:

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \tag{55}\\
3
\end{array}\right] \quad \mathbf{a}_{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

And $|\mathbf{A}|=-7$

Determinant

Properties of determinants:

- For $\mathbf{A} \in \mathbb{R}^{n \times n},|\mathbf{A}|=\left|\mathbf{A}^{\top}\right|$
- For $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n},|\mathbf{A B}|=|\mathbf{A}||\mathbf{B}|$
- For $\mathbf{A} \in \mathbb{R}^{n \times n},|\mathbf{A}|=0$ iff \mathbf{A} is singular (i.e. non-invertible).
- For $\mathbf{A} \in \mathbb{R}^{n \times n}$ and \mathbf{A} non-singular, $\left|\mathbf{A}^{-1}\right|=1 /|\mathbf{A}|$

Quadratic form

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ and a vector $\mathbf{x} \in \mathbb{R}^{n}$, the quadratic form is the scalar value

$$
\begin{equation*}
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}=\sum_{i=1}^{n} x_{i}(\mathbf{A} \mathbf{x})_{i}=\sum_{i=1}^{n} x_{i}\left(\sum_{j=1}^{n} \mathbf{A}_{i j} x_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{A}_{i j} x_{i} x_{j} \tag{56}
\end{equation*}
$$

Quadratic form

Some properties involving quadratic form:

- A symmetric matrix $\mathbf{A} \in \mathbb{S}^{n}$ is positive definite if for a non-zero $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x}^{\top} \mathbf{A} \mathbf{x}>0$
- A symmetric matrix $\mathbf{A} \in \mathbb{S}^{n}$ is positive semi-definite if for a non-zero $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x}^{\top} \mathbf{A} \mathbf{x} \geq 0$
- A symmetric matrix $\mathbf{A} \in \mathbb{S}^{n}$ is negative definite if for a non-zero $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x}^{\top} \mathbf{A} \mathbf{x}<0$
- A symmetric matrix $\mathbf{A} \in \mathbb{S}^{n}$ is negative semi-definite if for a non-zero $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x}^{\top} \mathbf{A} \mathbf{x} \leq 0$
- A symmetric matrix $\mathbf{A} \in \mathbb{S}^{n}$ is indefinite if it is neither positive nor negative semidefinite
n.b. Positive definite and negative definite matrices always have full rank.

Eigenvalues \& eigenvectors

Given $\mathbf{A} \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{A} with corresponding eigenvector $\mathbf{x} \in \mathbb{C}^{n}$ if

$$
\begin{equation*}
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}: \mathbf{x} \neq 0 \tag{57}
\end{equation*}
$$

n.b. The eigenvector is (usually) normalized to have length 1

Eigenvalues \& eigenvectors

Given $\mathbf{A} \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{A} with corresponding eigenvector $\mathbf{x} \in \mathbb{C}^{n}$ if

$$
\begin{equation*}
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}: \mathbf{x} \neq 0 \tag{57}
\end{equation*}
$$

n.b. The eigenvector is (usually) normalized to have length 1

We can write all of the eigenvector equations simultaneously as

$$
\begin{equation*}
\mathbf{A X}=\mathbf{X} \mathbf{\Lambda} \tag{58}
\end{equation*}
$$

where

$$
\mathbf{X} \in \mathbb{R}^{n \times n}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \tag{59}\\
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n} \\
\mid & \mid & & \mid
\end{array}\right], \quad \mathbf{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

This implies $\mathbf{A}=\mathbf{X} \boldsymbol{\Lambda} \mathbf{X}^{-1}$

Eigenvalues \& eigenvectors

Some properties:

$-\operatorname{tr} \mathbf{A}=\sum_{i=1}^{n} \lambda_{i}$

- $|\mathbf{A}|=\prod_{i=1}^{n} \lambda_{i}$
- The rank of \mathbf{A} is equal to the number of non-zero eigenvalues of \mathbf{A}.
- If \mathbf{A} is non-singular, then $1 / \lambda_{i}$ is an eigenvalue of \mathbf{A}^{-1} with correspondng eigenvector \mathbf{x}_{i}, i.e. $\mathbf{A}^{-1} \mathbf{x}_{i}=\left(1 / \lambda_{i}\right) \mathbf{x}_{i}$
- The eigenvalues of a diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ are just its diagonal entries d_{1}, \ldots, d_{n}

Eigenvalues \& eigenvectors

Example: For $\mathbf{A} \in \mathbb{S}^{n}$ with ordered eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$,

$$
\begin{equation*}
\max _{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} \text { subject to }\|\mathbf{x}\|_{2}^{2}=1 \tag{60}
\end{equation*}
$$

is solved with \mathbf{x}_{1} corresponding to λ_{1}. Similarly, it is solved with \mathbf{x}_{n} corresponding to λ_{n}.

Eigenvalues \& eigenvectors

Example:

Let $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ Find the eigenvalues \& eigenvectors.

Eigenvalues \& eigenvectors

Example:

Let $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ Find the eigenvalues \& eigenvectors.
We want

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=0 \tag{61}
\end{equation*}
$$

Eigenvalues \& eigenvectors

Example:

Let $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ Find the eigenvalues \& eigenvectors.
We want

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=0 \tag{61}
\end{equation*}
$$

We want $\operatorname{det}(\mathbf{A}-\lambda \mathbb{I})=0$.

$$
\begin{align*}
\operatorname{det}(\mathbf{A}-\lambda \mathbb{I}) & =(1-\lambda)^{2}-2^{2}=\lambda^{2}-2 \lambda-3 \tag{62}\\
& =(\lambda-3)(\lambda+1) \tag{63}
\end{align*}
$$

$\therefore \lambda=3,-1$.

Eigenvalues \& eigenvectors

Finding the eigenvectors: calculating the null spaces of ($\mathbf{A}-\lambda \mathbf{I}$)

$$
\begin{gather*}
\mathcal{N}(\mathbf{A}-3 \mathbf{I})=\mathcal{N}\left(\left[\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \tag{64}\\
\mathcal{N}(\mathbf{A}+\mathbf{I})=\mathcal{N}\left(\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \tag{65}
\end{gather*}
$$

Eigenvalues \& eigenvectors

Finding the eigenvectors: calculating the null spaces of
($\mathbf{A}-\lambda \mathbf{I}$)

$$
\begin{gather*}
\mathcal{N}(\mathbf{A}-3 \mathbf{I})=\mathcal{N}\left(\left[\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \tag{64}\\
\mathcal{N}(\mathbf{A}+\mathbf{I})=\mathcal{N}\left(\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \tag{65}
\end{gather*}
$$

Thus:

$$
\mathbf{X}=\left[\begin{array}{cc}
1 & 1 \tag{66}\\
1 & -1
\end{array}\right], \boldsymbol{\Lambda}=\left[\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right]
$$

Singular Value Decomposition

SVD is a way of decomposing matrices.
Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank r, \exists
$\mathbf{\Sigma} \in \mathbb{R}^{m \times n}, \mathbf{U} \in \mathbb{R}^{m \times m}, \mathbf{V} \in \mathbb{R}^{n \times m}$ э

$$
\begin{equation*}
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \tag{67}
\end{equation*}
$$

Notes:

- $\boldsymbol{\Sigma}$ is a diagonal matrix with entries $\sigma_{1}, \ldots, \sigma_{r}>0$ known as singular values.
- \mathbf{U} and \mathbf{V} are orthogonal matrices.
- Common uses:
- Least squares models
- Range, rank, null space
- Moore-Penrose inverse

Singular Value Decomposition

Some intuition:

$\mathbf{A} \in \mathbb{R}^{m \times n}$ can be thought of as a linear transformation, such that for $\mathbf{x} \in \mathbb{R}^{n}$,

$$
\begin{equation*}
f(\mathbf{x})=\mathbf{A} \mathbf{x} \tag{68}
\end{equation*}
$$

Singular Value Decomposition

Some intuition:

$\mathbf{A} \in \mathbb{R}^{m \times n}$ can be thought of as a linear transformation, such that for $\mathbf{x} \in \mathbb{R}^{n}$,

$$
\begin{equation*}
f(\mathbf{x})=\mathbf{A} \mathbf{x} \tag{68}
\end{equation*}
$$

SVD can be thought of as breaking this into individual steps:

Matrix calculus

Given $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$, the gradient of f wrt $\mathbf{A} \in \mathbb{R}^{m \times n}$ is

$$
\nabla_{\mathbf{A}} f(\mathbf{A}) \in \mathbb{R}^{m \times n}=\left[\begin{array}{cccc}
\frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{11}} & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{12}} & \cdots & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{1 n}} \tag{69}\\
\frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{21}} & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{22}} & \cdots & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{m 1}} & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{m 2}} & \cdots & \frac{\partial f(\mathbf{A})}{\partial \mathbf{A}_{m n}}
\end{array}\right]
$$

Some properties

- $\nabla_{\mathbf{x}}(f(\mathbf{x})+g(\mathbf{x}))=\nabla_{\mathbf{x}} f(\mathbf{x})+\nabla_{\mathbf{x}} g(\mathbf{x})$
- For $c \in \mathbb{R}, \nabla_{\mathbf{x}}(c f(\mathbf{x}))=c \nabla_{\mathbf{x}}(f(\mathbf{x}))$

The Hessian

Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the Hessian of f wrt $\mathbf{x} \in \mathbb{R}^{n}$ is

$$
\nabla_{\mathbf{x}}^{2} f(\mathbf{x}) \in \mathbb{R}^{n \times n}=\left[\begin{array}{cccc}
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{1}^{2}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} \tag{70}\\
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x}}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n}^{2}}
\end{array}\right]
$$

n.b. The Hessian is always symmetric, since $\frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f(\mathbf{x})}{\partial x_{j} \partial x_{i}}$

Least squares

Given $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$ э $b \notin \mathcal{R}(A)$, we want to find $\mathbf{x} \in \mathbb{R}^{n}$ as close as possible to \mathbf{b} (via the Euclidean norm),

$$
\begin{align*}
\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2} & =(\mathbf{A} \mathbf{x}-\mathbf{b})^{\top}(\mathbf{A} \mathbf{x}-\mathbf{b}) \tag{71}\\
& =\mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x}-2 \mathbf{b}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b}^{\top} \mathbf{b} \tag{72}
\end{align*}
$$

Least squares

Given $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$ э $b \notin \mathcal{R}(A)$, we want to find $\mathbf{x} \in \mathbb{R}^{n}$ as close as possible to \mathbf{b} (via the Euclidean norm),

$$
\begin{align*}
\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2} & =(\mathbf{A} \mathbf{x}-\mathbf{b})^{\top}(\mathbf{A} \mathbf{x}-\mathbf{b}) \tag{71}\\
& =\mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A x}-2 \mathbf{b}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b}^{\top} \mathbf{b} \tag{72}
\end{align*}
$$

Taking the gradient wrt \mathbf{x}, we have

$$
\begin{align*}
\nabla_{\mathbf{x}}\left(\mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x}-2 \mathbf{b}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b}^{\top} \mathbf{b}\right) & \left.=\nabla_{\mathbf{x}} \mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x}-\nabla_{\mathbf{x}} \mathbf{2 b}^{\top} \mathbf{A} \mathbf{x}+\nabla_{\mathbf{x}} \mathbf{b}^{\top} 3 \mathbf{b}\right) \\
& =\mathbf{A}^{\top} \mathbf{A} \mathbf{x}-2 \mathbf{A}^{\top} \mathbf{b} \tag{74}
\end{align*}
$$

Least squares

Given $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$ э $b \notin \mathcal{R}(A)$, we want to find $\mathbf{x} \in \mathbb{R}^{n}$ as close as possible to \mathbf{b} (via the Euclidean norm),

$$
\begin{align*}
\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2} & =(\mathbf{A} \mathbf{x}-\mathbf{b})^{\top}(\mathbf{A} \mathbf{x}-\mathbf{b}) \tag{71}\\
& =\mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A x}-2 \mathbf{b}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b}^{\top} \mathbf{b} \tag{72}
\end{align*}
$$

Taking the gradient wrt \mathbf{x}, we have
$\left.\nabla_{\mathbf{x}}\left(\mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x}-2 \mathbf{b}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b}^{\top} \mathbf{b}\right)=\nabla_{\mathbf{x}} \mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x}-\nabla_{\mathbf{x}} \mathbf{2 b}^{\top} \mathbf{A} \mathbf{x}+\nabla_{\mathbf{x}} \mathbf{b}^{\top} 3 \mathbf{3}\right)$

$$
\begin{equation*}
=\mathbf{A}^{\top} \mathbf{A} \mathbf{x}-2 \mathbf{A}^{\top} \mathbf{b} \tag{74}
\end{equation*}
$$

Setting this expression equal to zero and solving for \mathbf{x} gives the normal equations,

$$
\begin{equation*}
\mathbf{x}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \mathbf{b} \tag{75}
\end{equation*}
$$

References

Some textbooks on linear algebra:

- Linear Algebra (Jim Hefferon)
- Introduction to Applied Linear Algebra (Boyd \& Vandenberghe)
- Linear Algebra (Cherney, Denton et al.)
- Linear Algebra (Hoffman \& Kunze)
- Fundamentals of Linear Algebra (Carrell)
- Linear Algebra (S. Friedberg A. Insel L. Spence)

Probability

Sample space

The set of all possible values is called the sample space S.

- It's the space where realizations can be produced.

Sample space

The set of all possible values is called the sample space S.

- It's the space where realizations can be produced.

Example: Tossing a coin

$$
\begin{equation*}
S=\{\text { Heads, Tails }\} \tag{76}
\end{equation*}
$$

Sample space

The set of all possible values is called the sample space S.

- It's the space where realizations can be produced.

Example: Tossing a coin

$$
\begin{equation*}
S=\{\text { Heads, Tails }\} \tag{76}
\end{equation*}
$$

More notation:

- \emptyset is the empty set. Can be denoted as $\emptyset=\{ \}$.
- $\cup_{i=1}^{\infty} B_{i}$ is the union of sets B_{i}. Formally,
- $\cup_{i=1}^{\infty} B_{i}=\left\{s \in S: s \in B_{i} \forall i\right\}$
- $B \subseteq S$ means B is a subset of the sample space.
- Heads, without curly braces, is an element of set B.
- $B^{C}=S \backslash B$ is the complement of set B

Probability function

A probability function is a function $P: \mathcal{B} \rightarrow[0,1]$, where

- $P(S)=1$
- $P\left(\cup_{i=1}^{\infty} B_{i}\right)=\sum_{i=1}^{\infty} P\left(B_{i}\right)$ when B_{1}, B_{2}, \ldots are disjoint

Probability function

A probability function is a function $P: \mathcal{B} \rightarrow[0,1]$, where

- $P(S)=1$
- $P\left(\cup_{i=1}^{\infty} B_{i}\right)=\sum_{i=1}^{\infty} P\left(B_{i}\right)$ when B_{1}, B_{2}, \ldots are disjoint
n.b. We can define the domain \mathcal{B} many ways, e.g. $\mathcal{B}=2^{S}$

Probability function

A probability function is a function $P: \mathcal{B} \rightarrow[0,1]$, where

- $P(S)=1$
- $P\left(\cup_{i=1}^{\infty} B_{i}\right)=\sum_{i=1}^{\infty} P\left(B_{i}\right)$ when B_{1}, B_{2}, \ldots are disjoint
n.b. We can define the domain \mathcal{B} many ways, e.g. $\mathcal{B}=2^{S}$

Example: For flipping a coin, we have

$$
\begin{equation*}
\mathcal{B}=2^{S}=\{\emptyset,\{\text { Heads }\},\{\text { Tails }\},\{\text { Heads, Tails }\}\} \tag{77}
\end{equation*}
$$

This implies that

$$
P(B)= \begin{cases}1 & B=\{\text { Heads, Tails }\} \tag{78}\\ \frac{1}{2} & B=\{\text { Heads }\} \\ \frac{1}{2} & B=\{\text { Tails }\} \\ 0 & B=\emptyset\end{cases}
$$

n.b. The power set is a 'set of sets'

Probability function domains

Problem: Power sets don't work well for \mathbb{R}.

Probability function domains

Problem: Power sets don't work well for \mathbb{R}.
Solution: Define the domain using σ-algebra:

- $\emptyset \in \mathcal{B}$
- $B \in \mathcal{B} \Rightarrow B^{C} \in \mathcal{B}$
- $B_{1}, B_{2}, \ldots \in \mathcal{B} \Rightarrow \cup_{i=1}^{\infty} B_{i} \in \mathcal{B}$

Probability function domains

Problem: Power sets don't work well for \mathbb{R}.
Solution: Define the domain using σ-algebra:

- $\emptyset \in \mathcal{B}$
- $B \in \mathcal{B} \Rightarrow B^{C} \in \mathcal{B}$
- $B_{1}, B_{2}, \ldots \in \mathcal{B} \Rightarrow \cup_{i=1}^{\infty} B_{i} \in \mathcal{B}$

Example:

- The discrete σ-algebra:

$$
\mathcal{B}=2^{S}=\{\emptyset,\{\text { Heads }\},\{\text { Tails }\},\{\text { Heads, Tails }\}\}
$$

- The trivial σ-algebra: $\mathcal{B}=\emptyset \cup S=\{\emptyset,\{$ Heads, Tails $\}\}$
n.b. For uncountable sets, we use the Borel σ-algebra.

Probability space

Def:

A probability space is a triple (S, \mathcal{B}, P).

- S is the set of possible singleton events
- \mathcal{B} is the set of questions to ask P
- P maps sets into probabilities
n.b. They represent the ingredients needed to talk about probabilities

Probability functions

Some properties of $P(\cdot)$

- $P(B)=1-P\left(B^{C}\right)$
- $P(\emptyset)=0$, since $P(\emptyset)=1-P(S)$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$, implying that
- $P(A \cup B) \leq P(A)+P(B)$
- $P(A \cap B) \geq P(A)+P(B)-1$

Conditional probability

For events A and B where $P(B)>0$, the conditional probability of A given $B($ denoted $P(A \mid B))$ is

$$
\begin{equation*}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \tag{79}
\end{equation*}
$$

Example: In an agricultural region with 1000 farms, we want to know if the farm has vineyards or cork trees.

		Cork Trees	
		Yes	No
Vineyard	Yes	200	50
	No	150	600

Table: Frequency counts

Conditional probability

Example: In an agricultural region with 1000 farms, we want to know if the farm has vineyards or cork trees.

		Cork Trees	
		Yes	No
Vineyard	Yes	20%	5%
	No	15%	60%

Table: Joint probabilities

Questions:

- What is the probability of seeing cork trees in a farm with vineyards?
- Among farms with cork trees or vineyards, what is the probability of having both?

Conditional probability

Let's assume the following joint probabilties

		Cork Trees	
		Yes	No
Vineyard	Yes	25%	25%
	No	25%	25%

We have that $P(A \cap B)=P(A) \cdot P(B)$, meaning that they are independent

Law of total probability

Let $B_{1}, B_{2}, \ldots, B_{k} \in \mathcal{B}$ and $P\left(B_{i}\right)>0: i=1, \ldots, k$. The law of total probability states that

$$
\begin{equation*}
P(A)=\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right) \tag{80}
\end{equation*}
$$

Law of total probability

Let $B_{1}, B_{2}, \ldots, B_{k} \in \mathcal{B}$ and $P\left(B_{i}\right)>0: i=1, \ldots, k$. The law of total probability states that

$$
\begin{equation*}
P(A)=\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right) \tag{80}
\end{equation*}
$$

The conditional law of total probability states that

$$
\begin{equation*}
P(A \mid C)=\sum_{i=1}^{k} P\left(B_{i} \mid C\right) P\left(A \mid B_{i}, C\right) \tag{81}
\end{equation*}
$$

Bayes' Theorem

Let $B_{1}, B_{2}, \ldots, B_{k} \in \mathcal{B}, P\left(B_{i}\right)>0: i=1, \ldots, k$, and $P(A)>0$. Then Bayes' Theorem states that for $i=1, \ldots, k$

$$
\begin{equation*}
P\left(B_{i} \mid A\right)=\frac{P\left(B_{i}\right) P\left(A \mid B_{i}\right)}{\sum_{j=1}^{k} P\left(B_{j}\right) P\left(A \mid B_{j}\right)} \tag{82}
\end{equation*}
$$

n.b. Can be proven using the def of conditional probability

Bayes' Theorem

Example: You test positive for disease X, which has 90% sensitivity and a FPR of 10%. Past genetic screening has indicated that you have a 1 in 10,000 chance of having the disease. What is the probability of having disease X ?

Bayes' Theorem

Example: You test positive for disease X, which has 90% sensitivity and a FPR of 10%. Past genetic screening has indicated that you have a 1 in 10,000 chance of having the disease. What is the probability of having disease X ?

$$
\begin{align*}
P\left(B_{1} \mid A\right) & =\frac{P\left(A \mid B_{1}\right) P\left(B_{1}\right)}{P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)} \tag{83}\\
& =\frac{(0.9)(0.0001)}{(0.9)(0.0001)+(0.1)(0.9999)}=0.0009 \tag{84}
\end{align*}
$$

Bayes' Theorem

Example: You test positive for disease X, which has 90% sensitivity and a FPR of 10%. Past genetic screening has indicated that you have a 1 in 10,000 chance of having the disease. What is the probability of having disease X ?

$$
\begin{align*}
P\left(B_{1} \mid A\right) & =\frac{P\left(A \mid B_{1}\right) P\left(B_{1}\right)}{P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)} \tag{83}\\
& =\frac{(0.9)(0.0001)}{(0.9)(0.0001)+(0.1)(0.9999)}=0.0009 \tag{84}
\end{align*}
$$

Notes:

- $P\left(B_{1}\right)$ is often referred to as the prior probability
- $P\left(B_{1} \mid A\right)$ is often referred to as the posterior probability

Random variables

A random variable is a (Borel measureable) function $X: S \rightarrow \mathbb{R}$

Random variables

A random variable is a (Borel measureable) function $X: S \rightarrow \mathbb{R}$
Example: For coin tossing, we have $X:\{$ Heads, Tails $\} \rightarrow \mathbb{R}$, where

$$
X(s)= \begin{cases}1 & \text { if } s=\text { Heads } \tag{85}\\ 0 & \text { if } s=\text { Tails }\end{cases}
$$

Cumulative distribution function

The cumulative distribution function (cdf) of a random variable X is the function $F_{X}: \mathbb{R} \rightarrow[0,1]$.

Cumulative distribution function

The cumulative distribution function (cdf) of a random variable X is the function $F_{X}: \mathbb{R} \rightarrow[0,1]$.
Example: For coin tossing, we have $X:\{$ Heads, Tails $\} \rightarrow \mathbb{R}$,

> we have
where

$$
X(s)= \begin{cases}1 & \text { if } s=\text { Heads } \\ 0 & \text { if } s=\text { Tails }\end{cases}
$$

$$
F_{X}(x)= \begin{cases}0 & \text { if } x<0 \tag{87}\\ \frac{1}{2} & \text { if } 0 \leq x<1 \\ 1 & \text { if } x \geq 1\end{cases}
$$

Cumulative distribution function

The cumulative distribution function (cdf) of a random variable X is the function $F_{X}: \mathbb{R} \rightarrow[0,1]$.
Example: For coin tossing, we have $X:\{$ Heads, Tails $\} \rightarrow \mathbb{R}$, we have
where

$$
X(s)= \begin{cases}1 & \text { if } s=\text { Heads } \\ 0 & \text { if } s=\text { Tails }\end{cases}
$$

$$
F_{X}(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{1}{2} & \text { if } 0 \leq x<1 \\ 1 & \text { if } x \geq 1\end{cases}
$$

Cumulative distribution function

n.b. We have two ways of thinking about probabilities:

1. Probability functions
2. Cumulative distribution functions

Question: Which one should we use?
n.b. We have two ways of thinking about probabilities:

1. Probability functions
2. Cumulative distribution functions

Question: Which one should we use?
The Correspondence Theorem: Let $P_{X}(\cdot)$ and $P_{Y}(\cdot)$ be probability functions and $F_{X}(\cdot)$ and $F_{Y}(\cdot)$ be their associated cdfs. Then

$$
\begin{equation*}
P_{X}(\cdot)=P_{Y}(\cdot) \Longleftrightarrow F_{X}(\cdot)=F_{Y}(\cdot) \tag{88}
\end{equation*}
$$

Cumulative distribution function

Some properties for cdfs:

- $\lim _{x \Rightarrow-\infty} F(x)=0$
- $\lim _{x \Rightarrow \infty} F(x)=1$
- $F(\cdot)$ is non-decreasing
- $F(\cdot)$ is right-continuous

Quantile function

Let X be a continuous rv and one-to-one over the the possible values of X. Then

$$
\begin{equation*}
F^{-1}(p)=\inf \{x \in \mathbb{R}: p \leq F(x)\} \tag{89}
\end{equation*}
$$

Is the quantile function of X.

Quantile function

Let X be a continuous rv and one-to-one over the the possible values of X. Then

$$
\begin{equation*}
F^{-1}(p)=\inf \{x \in \mathbb{R}: p \leq F(x)\} \tag{89}
\end{equation*}
$$

Is the quantile function of X. Let X be a discrete $r v$ and one-to-one over the the possible values of X. Then $F^{-1}(p)$ states that we take the smallest value of x.

Example:

Nature of random variables

A random variable X is

- Discrete if $\exists f_{X}: \mathbb{R} \rightarrow[0,1]$ э $F_{X}(x)=\sum_{t \leq x} f_{X}(t), x \in \mathbb{R}$
- f_{X} is referred to as the probability mass function (pmf)
- Continuous if $\exists f_{X}: \mathbb{R} \rightarrow \mathbb{R}_{+}$э $F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t, x \in \mathbb{R}$
- f_{X} is referred to as the probability density function (pdf).
- n.b. We can have multiple pdf's consistent with the same cdf.
- n.b. For any specific value of a continuous random variable, its probability is 0 , i.e. $P(\{x\})=0 \forall x \in \mathbb{R}$.

Nature of random variables

A random variable X is

- Discrete if $\exists f_{X}: \mathbb{R} \rightarrow[0,1]$ э $F_{X}(x)=\sum_{t \leq x} f_{X}(t), x \in \mathbb{R}$
- f_{X} is referred to as the probability mass function (pmf)
- Continuous if $\exists f_{X}: \mathbb{R} \rightarrow \mathbb{R}_{+}$э $F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t, x \in \mathbb{R}$
- f_{X} is referred to as the probability density function (pdf).
- n.b. We can have multiple pdf's consistent with the same cdf.
- n.b. For any specific value of a continuous random variable, its probability is 0 , i.e. $P(\{x\})=0 \forall x \in \mathbb{R}$.
n.b. pmf's and pdf's sum to 1 , i.e.
- $f: \mathbb{R} \rightarrow[0,1]$ is the pmf of a discrete RV iff $\sum_{x \in \mathbb{R}} f(x)=1$
- $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$is the pdf of a continuous RV iff $\int_{-\infty}^{\infty} f(x) d x=1$

Nature of random variables

Example \#1: Coin tossing

$$
F_{X}(x)= \begin{cases}0 & \text { if } x<0 \tag{90}\\ \frac{1}{2} & \text { if } 0 \leq x<1 \\ 1 & \text { if } x \geq 1\end{cases}
$$

Here, F_{X} is a step function with pmf

$$
f_{X}(x)= \begin{cases}\frac{1}{2} & x \in\{0,1\} \tag{91}\\ 0 & \text { otherwise }\end{cases}
$$

Nature of random variables

Example \#2: Uniform distribution on (0,1)

$$
F_{X}(x)= \begin{cases}0 & \text { if } x<0 \tag{92}\\ x & \text { if } 0 \leq x<1 \\ 1 & \text { if } x \geq 1\end{cases}
$$

Here, F_{X} is a continuous function. Two consistent pdfs include

$$
f_{X}(x)=\left\{\begin{array}{ll}
1 & x \in[0,1] \tag{94}\\
0 & \text { otherwise }
\end{array} \quad(93) \quad f_{X}(x)= \begin{cases}1 & x \in(0,1) \\
0 & \text { otherwise }\end{cases}\right.
$$

Transformations of random variables

Suppose $Y=g(X)$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ and X is a discrete rv with cdf F_{X}.

Transformations of random variables

Suppose $Y=g(X)$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ and X is a discrete $r v$ with cdf F_{X}.

Since the function is applied to a rv, Y is also a random variable with probability function

$$
\begin{equation*}
f_{Y}(y)=P_{Y}(g(X)=y)=\sum_{x: g(x)=y} f_{X}(x) \tag{95}
\end{equation*}
$$

Transformations of random variables

Suppose $Y=g(X)$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ and X is a discrete rv with cdf F_{X}.

Since the function is applied to a rv, Y is also a random variable with probability function

$$
\begin{equation*}
f_{Y}(y)=P_{Y}(g(X)=y)=\sum_{x: g(x)=y} f_{X}(x) \tag{95}
\end{equation*}
$$

Example:

Let X be a uniform random variable on $\{-n,-n+1, \ldots, n-1, n\}$. Then $Y=|X|$ has mass function

$$
f_{Y}(y)= \begin{cases}\frac{1}{2 n+1} & \text { if } x=0 \tag{96}\\ \frac{2}{2 n+1} & \text { if } x \neq 0\end{cases}
$$

Transformations of random variables

Suppose $Y=g(X)$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ and $\mathrm{rv} X$ with $\operatorname{cdf} F_{X}$.

Transformations of random variables

Suppose $Y=g(X)$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ and $\mathrm{rv} X$ with $\operatorname{cdf} F_{X}$.
Then Y is also a random variable with cdf

$$
\begin{equation*}
F_{Y}(y)=P(Y \leq y)=P(g(X) \leq y)=\int x: g(x) \leq y f_{X}(x) d x \tag{97}
\end{equation*}
$$

We can get the probability function by taking the derivative

$$
\begin{equation*}
f_{Y}(y)=\frac{\partial}{\partial y} F_{Y}(y) \tag{98}
\end{equation*}
$$

Transformations of random variables

Suppose $Y=g(X)$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ and $\mathrm{rv} X$ with $\operatorname{cdf} F_{X}$.
Then Y is also a random variable with cdf

$$
\begin{equation*}
F_{Y}(y)=P(Y \leq y)=P(g(X) \leq y)=\int x: g(x) \leq y f_{X}(x) d x \tag{97}
\end{equation*}
$$

We can get the probability function by taking the derivative

$$
\begin{equation*}
f_{Y}(y)=\frac{\partial}{\partial y} F_{Y}(y) \tag{98}
\end{equation*}
$$

Example:

Let X be a uniform rv on $[-1,1]$. Then $Y=X^{2}$ has cdf

$$
\begin{align*}
F_{Y}(y) & =P_{Y}(Y \leq y)=P_{X}\left(X^{2} \leq y\right)=P_{X}\left(-y^{1 / 2} X \leq y^{1 / 2}\right) \\
& =\int_{-y^{1 / 2}}^{y^{1 / 2}} f(x) d x=y^{1 / 2} \tag{99}
\end{align*}
$$

Affine transformations

Suppose $Y=g(X)=a X+b, a>0, b \in \mathbb{R}$. Then

$$
\begin{equation*}
P(Y \leq y)=P(a X+b \leq y)=P\left(X \leq \frac{y-b}{a}\right)=F_{X}\left(\frac{y-b}{a}\right) \tag{100}
\end{equation*}
$$

Affine transformations

Suppose $Y=g(X)=a X+b, a>0, b \in \mathbb{R}$. Then

$$
\begin{equation*}
P(Y \leq y)=P(a X+b \leq y)=P\left(X \leq \frac{y-b}{a}\right)=F_{X}\left(\frac{y-b}{a}\right) \tag{100}
\end{equation*}
$$

If $a<0$, then

$$
\begin{equation*}
P(Y \leq y)=P(a X+b \leq y)=P\left(X \geq \frac{y-b}{a}\right)=1-F_{X}\left(\frac{y-b}{a}\right) \tag{101}
\end{equation*}
$$

Affine transformations

Suppose $Y=g(X)=a X+b, a>0, b \in \mathbb{R}$. Then

$$
\begin{equation*}
P(Y \leq y)=P(a X+b \leq y)=P\left(X \leq \frac{y-b}{a}\right)=F_{X}\left(\frac{y-b}{a}\right) \tag{100}
\end{equation*}
$$

If $a<0$, then

$$
\begin{equation*}
P(Y \leq y)=P(a X+b \leq y)=P\left(X \geq \frac{y-b}{a}\right)=1-F_{X}\left(\frac{y-b}{a}\right) \tag{101}
\end{equation*}
$$

In general, as long as the transformation $Y=g(X)$ is monotonic, then

$$
\begin{equation*}
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{\partial}{\partial y} g^{-1}(y)\right| \tag{102}
\end{equation*}
$$

References

- Grinstead \& Snell Chapters 1,2,4
- DeGroot \& Schervish Chapters 1,2,3

Statistics

Expectation

The expected value of $\mathrm{rv} X$ is defined as

$$
\mathbb{E}[X]= \begin{cases}\sum_{x} x f_{X}(x) & \text { if } x \text { is discrete } \tag{103}\\ \int x f_{X}(x) d x & \text { if } x \text { is continuous }\end{cases}
$$

For functions g of X,

$$
\mathbb{E}[g(X)]= \begin{cases}\sum_{x} g(x) f_{X}(x) & \text { if } \mathrm{x} \text { is discrete } \tag{104}\\ \int g(x) f_{X}(x) d x & \text { if } \mathrm{x} \text { is continuous }\end{cases}
$$

n.b. In general, $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$

Expectation

Examples:

Expectation

Important: Expectations might not exist!
Example: Suppose $f_{X}(x)=\frac{1}{x^{2}}$, defined on $[1, \infty]$. Then

$$
\begin{equation*}
\mathbb{E}[X]=\int x f_{X}(x) d x=\int x \frac{1}{x^{2}} d x=\int \frac{1}{x} d x=\infty \tag{105}
\end{equation*}
$$

Expectation

Important: Expectations might not exist!
Example: Suppose $f_{X}(x)=\frac{1}{x^{2}}$, defined on $[1, \infty]$. Then

$$
\begin{equation*}
\mathbb{E}[X]=\int x f_{X}(x) d x=\int x \frac{1}{x^{2}} d x=\int \frac{1}{x} d x=\infty \tag{105}
\end{equation*}
$$

Some properties of expectations:

- Linearity: $\mathbb{E}[a g(X)+b h(X)]=\mathbb{E}[a g(X)]+\mathbb{E}[b h(X)]$
- Order preserving:

$$
g(X) \leq h(X), \forall x \in \mathbb{R} \Rightarrow \mathbb{E}[g(X)] \leq \mathbb{E}[h(X)]
$$

Variance

The variance of $r v X$ is defined as

$$
\begin{equation*}
\operatorname{var}(X)=\mathbb{E}\left[(X-\mu)^{2}\right]: \mu=\mathbb{E}[X] \tag{106}
\end{equation*}
$$

Variance

The variance of $r v X$ is defined as

$$
\begin{equation*}
\operatorname{var}(X)=\mathbb{E}\left[(X-\mu)^{2}\right]: \mu=\mathbb{E}[X] \tag{106}
\end{equation*}
$$

Some notes:

- If $\mathbb{E}[X]$ doesn't exist then $\operatorname{var}(X)$ doesn't exist.
- $\operatorname{var}(X)$ can be infinite.
- The standard deviation σ of X is $\sqrt{\operatorname{var}(X)}$.

Variance

With some algebra, we see that

$$
\begin{align*}
\operatorname{var}(X) & =\mathbb{E}\left[(X-\mu)^{2}\right] \tag{107}\\
& =\mathbb{E}\left[X^{2}-2 X \mu+\mu^{2}\right] \tag{108}\\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[2 X \mu]+\mathbb{E}\left[\mu^{2}\right] \tag{109}\\
& =\mathbb{E}\left[X^{2}\right]-\mu^{2} \tag{110}\\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \tag{111}
\end{align*}
$$

Variance

Some properties:

- If X is bounded, then $\operatorname{var}(X)$ exists and is finite.
- $\operatorname{var}(X)=0 \Longleftrightarrow P(X=c)=1$ for some constant c.
- $\operatorname{var}(c X)=c^{2} \operatorname{var}(X)$ for some constant c.
- variance is linear, i.e. $\operatorname{var}\left(X_{1}+X_{2}\right)=\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)$.

Moments

The $k^{\text {th }}$ moment of $r v X$ is defined as

$$
\begin{equation*}
\mathbb{E}\left[X^{k}\right]=\mu_{k}^{\prime}: k \in \mathbb{N} \tag{112}
\end{equation*}
$$

The $k^{\text {th }}$ central/centered moment of $r v X$ is defined as

$$
\begin{equation*}
\mathbb{E}\left[(X-\mu)^{k}\right]=\mu_{k}: k \in \mathbb{N} \tag{113}
\end{equation*}
$$

Moments

The $k^{t h}$ moment of $r v X$ is defined as

$$
\begin{equation*}
\mathbb{E}\left[X^{k}\right]=\mu_{k}^{\prime}: k \in \mathbb{N} \tag{112}
\end{equation*}
$$

The $k^{\text {th }}$ central/centered moment of $r v X$ is defined as

$$
\begin{equation*}
\mathbb{E}\left[(X-\mu)^{k}\right]=\mu_{k}: k \in \mathbb{N} \tag{113}
\end{equation*}
$$

Notes:

- μ_{k}^{\prime} exists if and only if $\mathbb{E}\left[|X|^{k}\right]<\infty$.
- If μ_{k}^{\prime} exists, then for all $j<k, \mu_{j}^{\prime}$ also exists.
- Variance is μ_{2}.
- Skewness is μ_{3} / σ^{2}.
- Kurtosis is μ_{4} / σ^{4}.

Moments

Example: Suppose $X \sim N(0,1) \ni f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)$.

$$
\begin{equation*}
\mu_{1}^{\prime}=\mathbb{E}[X]=\int x f_{X}(x) d x=\left.f_{X}(x)\right|_{-\infty} ^{\infty}=0 \tag{114}
\end{equation*}
$$

n.b. For the normal distribution, $x f_{X}(x)=-\frac{\partial}{\partial x} f_{X}(x)$.

Moments

Example: Suppose $X \sim N(0,1) \ni f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)$.

$$
\begin{equation*}
\mu_{1}^{\prime}=\mathbb{E}[X]=\int x f_{X}(x) d x=\left.f_{X}(x)\right|_{-\infty} ^{\infty}=0 \tag{114}
\end{equation*}
$$

n.b. For the normal distribution, $x f_{X}(x)=-\frac{\partial}{\partial x} f_{X}(x)$.

$$
\begin{equation*}
\mu_{2}=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[(X-0)^{2}\right]=\mathbb{E}\left[X^{2}\right]=\int x^{2} f_{X}(x) d x \tag{115}
\end{equation*}
$$

using integration by parts, we get

$$
\begin{equation*}
\int x^{2} f_{X}(x) d x=\underbrace{-\left.x f_{X}(x)\right|_{-\infty} ^{\infty}}_{=0}+\underbrace{\int_{\infty}^{\infty} f_{X}(x) d x=1}_{=1}=1 \tag{116}
\end{equation*}
$$

Moment generating function

Moment generating functions (mgf) are used to calculate the moments of a rv. The mgf of a rv X is a function $M_{X}: \mathbb{R} \Rightarrow \mathbb{R}_{+}$ such that

$$
\begin{equation*}
M_{X}(t)=\mathbb{E}\left[e^{t X}\right]: t \in \mathbb{R} \tag{117}
\end{equation*}
$$

Moment generating function

Moment generating functions (mgf) are used to calculate the moments of a rv. The mgf of a rv X is a function $M_{X}: \mathbb{R} \Rightarrow \mathbb{R}_{+}$ such that

$$
\begin{equation*}
M_{X}(t)=\mathbb{E}\left[e^{t X}\right]: t \in \mathbb{R} \tag{117}
\end{equation*}
$$

Notes:

- The mgf is a function of $t ; X$ is integrated out by \mathbb{E}.
- The mgf only applies if the moments of the rv exists.
- If two rv X, Y have the same $m g f\left(\right.$ i.e. $M_{X}(t)=M_{Y}(t)$), then they have the same distribution.
- Even if a rv has moments, the mgf may yield infinity (e.g. log-normal distribution).

Moment generating function

Taking the derivative of the mgf, we see that

$$
\begin{equation*}
\frac{\partial}{\partial t} M_{X}(t)=\frac{\partial}{\partial t} \int e^{t x} f_{X}(x) d x=\int x \cdot e^{t x} f_{X}(x) d x \tag{118}
\end{equation*}
$$

What happens when $t=0$?

Moment generating function

Taking the derivative of the mgf, we see that

$$
\begin{equation*}
\frac{\partial}{\partial t} M_{X}(t)=\frac{\partial}{\partial t} \int e^{t x} f_{X}(x) d x=\int x \cdot e^{t x} f_{X}(x) d x \tag{118}
\end{equation*}
$$

What happens when $t=0$?

$$
\begin{equation*}
\int x \cdot e^{t x} f_{X}(x) d x=\int x f_{X}(x) d x=\mathbb{E}[X] \tag{119}
\end{equation*}
$$

Moment generating function

Taking the derivative of the mgf, we see that

$$
\begin{equation*}
\frac{\partial}{\partial t} M_{X}(t)=\frac{\partial}{\partial t} \int e^{t x} f_{X}(x) d x=\int x \cdot e^{t x} f_{X}(x) d x \tag{118}
\end{equation*}
$$

What happens when $t=0$?

$$
\begin{equation*}
\int x \cdot e^{t x} f_{X}(x) d x=\int x f_{X}(x) d x=\mathbb{E}[X] \tag{119}
\end{equation*}
$$

What happens when $t=0$ for the $k^{t h}$ derivative?

Moment generating function

Taking the derivative of the mgf, we see that

$$
\begin{equation*}
\frac{\partial}{\partial t} M_{X}(t)=\frac{\partial}{\partial t} \int e^{t x} f_{X}(x) d x=\int x \cdot e^{t x} f_{X}(x) d x \tag{118}
\end{equation*}
$$

What happens when $t=0$?

$$
\begin{equation*}
\int x \cdot e^{t x} f_{X}(x) d x=\int x f_{X}(x) d x=\mathbb{E}[X] \tag{119}
\end{equation*}
$$

What happens when $t=0$ for the $k^{t h}$ derivative?

$$
\begin{equation*}
\frac{\partial}{\partial t^{k}} M_{X}(t)=\int x^{k} \cdot e^{t x} f_{X}(x) d x \tag{120}
\end{equation*}
$$

At $t=0$, we get $\left.\frac{\partial}{\partial t^{k}} M_{X}(t)\right|_{t=0}=\mathbb{E}\left[X^{k}\right]$
Evaluating the $k^{t h}$ derivative at $t=0$ gives us the $k^{t h}$ moment of X.

Moment generating function

Example: The standard normal distribution

$$
\begin{align*}
M_{X}(t) & =\mathbb{E}\left[e^{t X}\right]=\int e^{t X} f_{X}(x) d x \tag{121}\\
& =\int e^{t X} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x \tag{122}\\
& =\int \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(x-t)^{2}}{2}\right) \exp \left(\frac{t^{2}}{2}\right) d x \tag{123}\\
& =\exp \left(\frac{t^{2}}{2}\right) \int \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(x-t)^{2}}{2}\right) d x \tag{124}\\
& =\exp \left(\frac{t^{2}}{2}\right) \tag{125}
\end{align*}
$$

Moment generating function

The mgf for affine transformations is straight forward, e.g. If $Y=a X+b$, then $M_{Y}(t)=e^{b t} M_{X}(a t)$.

Example: Let $X=\mu+\sigma Z: Z \sim N(0,1)$. Then

$$
\begin{equation*}
M_{X}(t)=M_{\mu+\sigma Z}(t)=e^{\mu t} M_{Z}(\sigma t)=e^{\mu t} e^{\frac{1}{2} \sigma^{2} t^{2}}=e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}} \tag{126}
\end{equation*}
$$

Moment generating function

The mgf for affine transformations is straight forward, e.g. If $Y=a X+b$, then $M_{Y}(t)=e^{b t} M_{X}(a t)$.

Example: Let $X=\mu+\sigma Z: Z \sim N(0,1)$. Then

$$
\begin{equation*}
M_{X}(t)=M_{\mu+\sigma Z}(t)=e^{\mu t} M_{Z}(\sigma t)=e^{\mu t} e^{\frac{1}{2} \sigma^{2} t^{2}}=e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}} \tag{126}
\end{equation*}
$$

Another example:
Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} P_{0}$ and $Y=\sum_{i=1}^{n} X_{i}$. Then

$$
\begin{align*}
M_{Y}(t) & =\mathbb{E}\left[e^{t Y}\right]=\mathbb{E}\left[e^{t\left(X_{1}+\cdots+X_{n}\right)}\right]=\mathbb{E}\left[\prod_{i=1}^{n} e^{t X_{i}}\right] \tag{127}\\
& =\prod_{i=1}^{n} \mathbb{E}\left[e^{t X_{i}}\right]=\prod_{i=1}^{n} M_{X_{i}}(t) \tag{128}
\end{align*}
$$

Distributions

Most useful distributions have names, e.g.

- Normal distribution
- Uniform distribution
- Bernoulli distribution
- Binomial distribution
- Poisson distribution
- Gamma distribution

Normal distribution

A rv X follows a Normal distribution, denoted as $X \sim N\left(\mu, \sigma^{2}\right)$ with mean μ and variance σ^{2}, if X is continuous with pdf

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right): x \in \mathbb{R} \tag{129}
\end{equation*}
$$

Note:

If $Z \sim N(0,1)$ then $X=\mu+\sigma Z \sim N\left(\mu, \sigma^{2}\right)$. It follows that

- $\mathbb{E}[X]=\mathbb{E}[\mu+\sigma Z]=\mu+\sigma \mathbb{E}[Z]=\mu$.
- $\operatorname{var}(X)=\operatorname{var}(\mu+\sigma Z)=\sigma^{2} \operatorname{var}(Z)=\sigma^{2}$.

Normal distribution

A rv X follows a Normal distribution, denoted as $X \sim N\left(\mu, \sigma^{2}\right)$ with mean μ and variance σ^{2}, if X is continuous with pdf

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right): x \in \mathbb{R} \tag{129}
\end{equation*}
$$

Note:

If $Z \sim N(0,1)$ then $X=\mu+\sigma Z \sim N\left(\mu, \sigma^{2}\right)$. It follows that

- $\mathbb{E}[X]=\mathbb{E}[\mu+\sigma Z]=\mu+\sigma \mathbb{E}[Z]=\mu$.
- $\operatorname{var}(X)=\operatorname{var}(\mu+\sigma Z)=\sigma^{2} \operatorname{var}(Z)=\sigma^{2}$.

Most well known distribution due to:

1. Good mathematical properties
2. Often (approximately) observed in the real world (e.g. heights, weights, etc.)
3. Central limit theorem

Central limit theorem

Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} P_{0}$, where $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{var}\left(X_{i}\right)=\sigma^{2}$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\frac{n^{1 / 2}\left(\bar{X}_{n}-\mu\right)}{\sigma} \leq x\right)=\Phi(x) \tag{130}
\end{equation*}
$$

where $\Phi(x)$ is the cdf for the standard normal distribution.

Central limit theorem

Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} P_{0}$, where $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{var}\left(X_{i}\right)=\sigma^{2}$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\frac{n^{1 / 2}\left(\bar{X}_{n}-\mu\right)}{\sigma} \leq x\right)=\Phi(x) \tag{130}
\end{equation*}
$$

where $\Phi(x)$ is the cdf for the standard normal distribution.
Example: The sample mean

$$
\begin{equation*}
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \tag{131}
\end{equation*}
$$

The $95 \% \mathrm{Cl}: \bar{X}_{n} \pm z_{\alpha / 2} \hat{s e_{n}}$

Uniform distribution

A rv X follows a Uniform distribution $U(a, b)$ if X is continuous with pdf

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a} & x \in[a, b] \tag{132}\\ 0 & \text { otherwise }\end{cases}
$$

Under $U(a, b)$, all observations are "equally likely" $\mathbb{E}[X]=\frac{a+b}{2}, \operatorname{var}(X)=\frac{(b-a)^{2}}{12}$, and $M_{X}(t)=\frac{e^{b t}-e^{a t}}{(b-a) t}$.

Uniform distribution

A rv X follows a Uniform distribution $U(a, b)$ if X is continuous with pdf

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a} & x \in[a, b] \tag{132}\\ 0 & \text { otherwise }\end{cases}
$$

Under $U(a, b)$, all observations are "equally likely"
$\mathbb{E}[X]=\frac{a+b}{2}, \operatorname{var}(X)=\frac{(b-a)^{2}}{12}$, and $M_{X}(t)=\frac{e^{b t}-e^{a t}}{(b-a) t}$.
Note: if $X \sim U(a, b)$, then $X=(b-a) \tilde{X}+a: \tilde{X} \sim U(0,1)$ and

$$
f_{\tilde{x}}(x)= \begin{cases}1 & x \in[0,1] \tag{133}\\ 0 & \text { otherwise }\end{cases}
$$

Bernoulli distribution

A rv X follows a Bernoulli distribution $\operatorname{Ber}(p)$ if X is discrete with pmf

$$
f_{X}(x)= \begin{cases}p & \text { if } x=1 \tag{134}\\ 1-p & \text { if } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

$\mathbb{E}[X]=p, \operatorname{var}(X)=p(1-p)$, and $M_{X}(t)=e^{t} p+(1-p)$.

Binomial distribution

A rv X follows a Binomial distribution $\operatorname{Bin}(n, p)$ if X is discrete with pmf

$$
f_{X}(x)= \begin{cases}\binom{n}{x} p^{x}(1-p)^{n-x} & \text { if } x \in\{0,1, \ldots, n\} \tag{135}\\ 0 & \text { otherwise }\end{cases}
$$

$\mathbb{E}[X]=n p, \operatorname{var}(X)=n p(1-p)$, and $M_{X}(t)=\left(e^{t} p+(1-p)\right)^{n}$.
If $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Ber}(p)$, then $Y=X_{1}+\cdots+X_{n}$ follows $B(n, p)$.

A rv X follows a Negative Binomial distribution $N B(r, p)$ if X is discrete with pmf

$$
f_{X}(x)= \begin{cases}\binom{r+x-1}{x} p^{x}(1-p)^{r} & \text { if } x \in\{0,1, \ldots, n\} \tag{136}\\ 0 & \text { otherwise }\end{cases}
$$

$\mathbb{E}[X]=\frac{r(1-p)}{p}, \operatorname{var}(X)=\frac{r(1-p)}{p^{2}}$, and
$M_{X}(t)=\left(\frac{p}{1-q e^{t}}\right)^{r}: t<\log \left(\frac{1}{q}\right)$.
When $r=1$, we refer to it as the Geometric distribution.

- It has a memoryless property.

Poisson distribution

A rv X follows a Poisson distribution $\operatorname{Pois}(\lambda)$ if X is discrete with pmf

$$
f_{X}(x)= \begin{cases}e^{-\lambda} \frac{\lambda^{x}}{x!} & x \in \mathbb{N} \tag{137}\\ 0 & \text { otherwise }\end{cases}
$$

$\mathbb{E}[X]=\lambda, \operatorname{var}(X)=\lambda$, and $M_{X}(t)=e^{\lambda\left(e^{t}-1\right)}$.
Some notes:

- $\operatorname{Bin}(n, p) \approx \operatorname{Pois}(n p)$ when n is large and $n p$ is small.
- "Poisson Processes" are typically used to model rates, e.g. mortality rates

1. The number of events in each fixed time interval t has a Poisson distribution with mean λt.
2. The number of events in each time interval is independent.

Gamma distribution

Arv X follows a Gamma distribution $\operatorname{Gamma}(\alpha, \beta)$ if X is continuous with pdf

$$
f_{X}(x)= \begin{cases}\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\beta}} & x>0 \tag{138}\\ 0 & \text { otherwise }\end{cases}
$$

where $\Gamma(x)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t: \alpha>0$.
$\mathbb{E}[X]=\alpha \beta, \operatorname{var}(X)=\alpha \beta^{2}$, and
$M_{X}(t)=\left(1-\frac{t}{\beta}\right)^{-\alpha}: t<\beta$.

Gamma distribution

A rv X follows a Gamma distribution $\operatorname{Gamma}(\alpha, \beta)$ if X is continuous with pdf

$$
f_{X}(x)= \begin{cases}\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-\frac{\chi}{\beta}} & x>0 \tag{138}\\ 0 & \text { otherwise }\end{cases}
$$

where $\Gamma(x)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t: \alpha>0$.
$\mathbb{E}[X]=\alpha \beta, \operatorname{var}(X)=\alpha \beta^{2}$, and
$M_{X}(t)=\left(1-\frac{t}{\beta}\right)^{-\alpha}: t<\beta$.
Notes:

- $\frac{1}{\Gamma(\alpha) \beta^{\alpha}}$ is often referred to as the 'normalizing constant'.
- When $\alpha=1$, we get the exponential distribution.

Beta distribution

A rv X follows a Beta distribution $\operatorname{Beta}(\alpha, \beta)$ if X is continuous with pdf

$$
f_{X}(x)= \begin{cases}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} & 0<x<1 \tag{139}\\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& \mathbb{E}[X]=\frac{\alpha}{\alpha+\beta}, \operatorname{var}(X)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}, \text { and } \\
& M_{X}(t)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \int_{0}^{1} x^{\alpha+k-1}(1-x)^{\beta-1} d x .
\end{aligned}
$$

n.b. Very popular distribution in Bayesian statistics.

Multinomial distribution

Suppose rv $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)$ represents counts of k different classes. Then it follows a Multinomial distribution $\operatorname{Multi}\left(p_{1}, \ldots, p_{k}\right)$ if it has pdf

$$
f_{X}(x)= \begin{cases}\binom{n}{x_{1}, \ldots, x_{k}} p_{1}^{x_{1}} \cdots p_{k}^{x_{k}} & x_{1} \geq 0, \ldots, x_{k} \geq 0 \tag{140}\\ 0 & \text { otherwise }\end{cases}
$$

where $n=\sum_{i=1}^{k} X_{i}$.
$\mathbb{E}\left[X_{i}\right]=n p, \operatorname{var}\left(X_{i}\right)=n p_{i}\left(1-p_{i}\right)$, and $\operatorname{Cov}\left(X_{i}, X_{j}\right)=-n p_{i} p_{j}$.

Dirac delta function

While not technically a pdf, often used for e.g. mixture of discrete distributions

The Dirac delta function is defined as $\delta: \mathbb{R} \rightarrow \mathbb{R} \cup \infty \ni$

$$
\delta(x)= \begin{cases}+\infty & x=0 \tag{141}\\ 0 & \text { otherwise }\end{cases}
$$

and $\int_{-\infty}^{\infty} \delta(x) d x=1$
The sifting property:

$$
\begin{equation*}
\int f(x) \delta(x-a) d x=f(a) \tag{142}
\end{equation*}
$$

Dirac delta function

Example: Let

$$
Y= \begin{cases}1 & \text { w.p. } \alpha \tag{143}\\ U(0,1) & \text { w.p. } 1-\alpha\end{cases}
$$

Then $f_{Y}(y)=\alpha \delta(y-1)+(1-\alpha) \mathbb{I}(y \in[0,1])$

Dirac delta function

Example: Let

$$
Y= \begin{cases}1 & \text { w.p. } \alpha \tag{143}\\ U(0,1) & \text { w.p. } 1-\alpha\end{cases}
$$

Then $f_{Y}(y)=\alpha \delta(y-1)+(1-\alpha) \mathbb{I}(y \in[0,1])$

$$
\begin{align*}
\mathbb{E}[Y] & =\int_{\infty}^{\infty} y(\alpha \delta(y-1)+(1-\alpha) \mathbb{I}(y \in[0,1])) d y \\
& =\alpha \int_{\infty}^{\infty} y\left(\delta(y-1) d y+(1-\alpha) \int_{0}^{1} y d y\right. \tag{145}\\
& =\alpha+\left.(1-\alpha) \frac{y^{2}}{2}\right|_{0} ^{1} \tag{146}\\
& =\alpha+\frac{1-\alpha}{2} \tag{147}\\
& =\frac{1+\alpha}{2} \tag{148}
\end{align*}
$$

References

- DeGroot \& Schervish Chapters 4.1-4.5,5.1-5.9
- Grinstead \& Snell Chapters 5,6

