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Linear algebra
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Basic concepts

Consider the following equations:

4X1 - 5X2
—2x1 + 3x

Let's solve for x; and x».
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Basic concepts

Consider the following equations:

4x;1 —5xp = —13 (1)
—2x1+3x = 9 (2)

Let's solve for x; and x».

We can write this system of equations more compactly in matrix
notation, e.g.

Ax =b (3)

-5 —13
where A = [2 3] and b = [ 9 ]
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Basic concepts

Some basic notation:

» We denote a matrix with m rows and n columns as
A € R™*" where each entry in the matrix is a real number.

» We denote a vector with n entries as x € R”".

» By convention, we typically think of a vector as a 1 column
matrix.

> We denote the it" element of a vector x as x;, e.g.
X1
X2
x=|. (4)

Xn
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Basic concepts

Some basic notation:

» We denote each entry in a matrix A by aj;, corresponding to

the it row and j column, e.g.

a1 412 -+ din

a axp -+ an
A=

dml a4m2 dmn

» We denote the transpose of a matrix as AT e.g.

d11 421 - dmil
AT a12 a2 - ame
din d2n dmn
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Basic concepts

Some basic notation:

» We denote the j column of A by ajorAj eg.

A=|a; a --- a, (7)

» We denote the it row of A by a; or A,..
_ ol —

T

— a,
n.b. This isn't universal, though should be clear from its
presentation and use.
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Matrix multiplication

Given two matrices A € R™*" B € R"™P, we can multiply them
by

C=ABcR™P:C;=) AyBy (9)
k=1

n.b. The dimensions have to be compatible for matrix
multiplication to be valid (e.g. the number of columns in A must
be equal to the number of rows in B).
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Matrix multiplication

Given x,y € R", the quantity x'y € R (aka dot product or inner
product) is a scalar given by

| <

XTy f— [Xl X2 L Xn:| . - in)/i (10)
) i=1
Yn

Note: For vectors, we always have that x"y = y'x. This is not
generally true for matrices.

STATS 202: Data Mining and Analysis L. Tran 9/101



Matrix multiplication

Given x € R™,y € R”", the quantity x'y € R™*" (aka outer
product) is a matrix given by

X1 X1y1 X1y2 -+ Xiyn
X2 Xoy1 X222 -+ X2Yn

xy! = : i yo o0 oyl = : A : (11)
Xn XmY1T XmY2 - XmYn
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Matrix multiplication

Example: Let A € R™*" be a matrix such that all columns are
equal to some vector x € R™. Using outer products, we can
represent A compactly as

X1 X1 cee X1
| | X2 X2 0 X0
A=|[x x - x| = ) o ) (12)
| | P o
_X1
X2
= |7 pr 1] @3
= x1' (14)
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Matrix-vector products

Given A € R™" x € R", their product is a vector
y=Ax € R™.
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Matrix-vector products

Given A € R™" x € R", their product is a vector
y=Ax € R™.

There are two ways of interpreting this:

[— a] — a] x
— a; — aj x
y = Ax = i X = . (15)
— a), — a, x
— Xl
IR
= |a1 a -+ ay| | 7 (16)
Ty
= aixy +axx + -+ apXy (17)
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Matrix-vector products

Example:
1 2 3
-3
. 2 5 6
Define A = 7 8 9|*= :i
10 11 12

Calculate y = Ax.
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Matrix-matrix products

Given A € R™*" B € R"*P, their product is a matrix
C = AB € R™*P,
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Matrix-matrix products

Given A € R™*" B € R"*P, their product is a matrix
C = AB € R™*P,

Similar to before, we can think of this in two ways:

Interpretation # 1

L aT
— a] —| [l |
C=AB = : by by --- b, (18)
b
[a/b; a b, aj b,
B alb; a;bz a2pr (19)
lanb1 alb, ---alb,

STATS 202: Data Mining and Analysis L. Tran 14/101



Matrix-matrix products

Interpretation # 2

C=AB = Alb, b, - b, (20)
| |
| | |
— |Ab; Ab, --- Ab, (21)
L | | |
[— a] — — a;B —
— a; — — ajB —
— ? B = 2 (22)
— al — — alB —
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Matrix multiplication properties

> Associative: (AB)C = A(BC)
» Distributive: A(B+ C) = AB + AC

» Not commutative: AB # BA
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Matrix multiplication properties

Demonstrating associativity:

We just need to show that ((AB)C);; =

(
(AB)iCyj = Z < AilBlk> Cyj (23)
1

p
(AB)C); = )
k=1 k=1 \I=
P /N n [/ p

= > <Z AiIBIkaj> => (Z AiIBlkaj>24)
k=1 \I=1 =1 \k=1

= ZA,/ (Z B/kaJ> = Z Ay (BC), (25)

= (A(BC))U (26)
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Operations & properties

The identity matrix:

The identity matrix, denoted | € R™" is a square matrix with 1's
in the diagonal and 0's everywhere else, i.e.

l,-,:{l F=J (27)
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Operations & properties

The identity matrix:

The identity matrix, denoted | € R™" is a square matrix with 1's
in the diagonal and 0's everywhere else, i.e.

1 i
=< 7 (27)
0 i#j
It has the property
Al=A=IAVA c R™*" (28)

n.b. The dimensionality of | is typically inferred (e.g. n x nvs
m x m)
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Operations & properties

The diagonal matrix: The diagonal matrix, denoted

D = diag(di, da, . .., d,) is a matrix where all non-diagonal
elements are 0, i.e.
4 i
D=7 " (29)
0 i#J

Clearly, | = diag(1,1,...,1).
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The transpose

The transpose of a matrix results from “flipping” the rows and

columns, i.e.
(AT)j = Aj; (30)

Consequently, for A € R™*" we have that AT ¢ RP*m,
Some properties:

» (AT =A

» (AB)" =B'AT

» (A+B) =AT +BT
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Symmetry

A square matrix A € R"™<" is symmetric if A = AT.

It is anti-symmetric if A = —AT.
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Symmetry

A square matrix A € R"™<" is symmetric if A = AT.
It is anti-symmetric if A = —AT.

It is easy to show that A + AT is symmetric and A — AT is
anti-symmetric. Consequently, we have that

A= (A+AT)+ (A A") (31)
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Symmetry

A square matrix A € R"™<" is symmetric if A = AT.
It is anti-symmetric if A = —AT.

It is easy to show that A + AT is symmetric and A — AT is
anti-symmetric. Consequently, we have that

A= (A+AT)+ (A A") (31)

Symmetric matrices tend to be denoted as A € S”.
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The trace of a square matrix A € R™", denoted tr(A) or trA is
the sum of the diagonal elements, i.e.

trA = Z Aj (32)
i=1

The trace has the following properties:
> For A€ R™", trA = trAT
For A,B € R"™", tr(A+B)=trA+ trB
For A€ R™" c e R, tr(cA) = ctrA
For A,B € R™" 5 AB € R"™", trAB = trBA

For A,B,C € R™" 5 ABC € R™",
trABC = trBCA = trCAB, and so on for more matrices

vV v v Y
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Example: Proving that trAB = trBA

trAB

STATS 202: Data Mining and Analysis

m m n
> (AB)i=> A;B;
i=1 i=1 \ j=1

m n m n
2D AiBi=2_ > BiA;
i=1 j=1 i=1 j=1

m n n
Z Z BjiAj | = (BA)JJ
i=1 \j=1 j=1

trBA

L. Tran
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A norm of a vector x, denoted ||x|| is a measure of the “length” of
the vector. For example, the fo-norm (aka Euclidean norm)
is

(37)

n.b. ||x||3= x"x, i.e. the squared norm of a vector is the dot

product with itself.

STATS 202: Data Mining and Analysis L. Tran 24/101



A norm of a vector x, denoted ||x|| is a measure of the “length” of
the vector. For example, the fo-norm (aka Euclidean norm)
is

(37)

n.b. ||x||3= x"x, i.e. the squared norm of a vector is the dot

product with itself.
Other norms:
» (1-norm, ie. ||x||1= D7 |xil.

» (s-norm, i.e. ||x||co= max|x;|.
1
> Lpnorm, e ||x|[p= (320 |xi[P)MP.
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Formally, a norm is any function f : R” — R satisfying four
properties:

1. Vx € R", f(x) > 0 (non-negativity).

2. f(x) = 0 iff x = 0 (definiteness).

3. ¥x € R",c € R, f(cx) = |c|f(x) (homogeneity).

4. Vx,y € R", f(x+y) < f(x)+ f(y) (triangle inequality).
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Formally, a norm is any function f : R” — R satisfying four
properties:

1. Vx € R", f(x) > 0 (non-negativity).

2. f(x) = 0 iff x = 0 (definiteness).

3. ¥x € R",c € R, f(cx) = |c|f(x) (homogeneity).

4. Vx,y € R", f(x+y) < f(x)+ f(y) (triangle inequality).

Norms can also be defined for matrices, e.g. The Frobenius

norm,
2 = \/tr(ATA) (38)

1A=
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Linear independence

A set of vectors {x1,X2,...,Xp} € R™ is (linearly) dependent if
one of the vectors x; can be represented as a linear combination of
the remaining vectors, i.e.

n—1
Xp = ZO[,’X,’ (39)
i=1

for some scalar values a1, a,...,a,_1 € R

STATS 202: Data Mining and Analysis L. Tran 26/101



Linear independence

A set of vectors {x1,X2,...,Xp} € R™ is (linearly) dependent if
one of the vectors x; can be represented as a linear combination of
the remaining vectors, i.e.

n—1
xn = Zaixi (39)
i=1

for some scalar values a1, a,...,a,_1 € R

Example: Let

1 4 2
X1 = 2 Xo = 1 X3 = -3 (40)
3 5 -1

Is {x1,x2,x3} linearly independent?
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The column rank of A € R™*" is the largest subset of columns of
A that are linearly independent.

» The column rank is always < n.

The row rank of A € R™*" is the largest subset of rows of A that
are linearly independent.

» The row rank is always < m.
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The column rank of A € R™*" is the largest subset of columns of
A that are linearly independent.

» The column rank is always < n.

The row rank of A € R™*" is the largest subset of rows of A that
are linearly independent.

» The row rank is always < m.

n.b. Column rank is always equal to row rank. Thus, we refer to
both as the rank of the matrix.

» For A € R™*" if rank(A) = min(m, n), then A is said to be
of full rank.

» For A € R™", rank(A) = rank(AT.

» For A € R™*" B e R"™P,
rank(AB) < min(rank(A), rank(B)).

» For A,B € R™*", rank(A + B) < rank(A) + rank(B)
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Matrix inverse

The inverse of a square matrix A € R"*" is denoted A%, and is
unique such that
AlA=1=AA"! (41)
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Matrix inverse

The inverse of a square matrix A € R"*" is denoted A%, and is

unique such that
AlA=1=AA"! (41)

n.b. Not all matrices have inverses (e.g. m X n matrices).

Def:
A is invertible or non-singular if A~1 exists.
Otherwise, it is non-invertible or singular.
L. (A—l)—1 =A
2. (AB) =B !A!
3. (AT =(AT)

» This matrix is sometimes denoted A~ "
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Orthogonal Matrices

Def:
» A vector x € R" is normalized if ||x||2=1

» Two vectors x,y € R” are orthogonal if x'y =0

» A square matrix U € R"*" is orthogonal or orthonormal if all
its columns are:

1. Orthogonal to each other

2. Normalized

We therfore have that

U'u=I=uUu" (42)
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Orthogonal Matrices

Def:
» A vector x € R" is normalized if ||x||2=1

» Two vectors x,y € R” are orthogonal if x'y =0

» A square matrix U € R"*" is orthogonal or orthonormal if all
its columns are:

1. Orthogonal to each other

2. Normalized

We therfore have that
u'u=1=uu’ (42)
Another nice property:

[|Ux||2= ||x|]2 Vx € R",U € R"*" orthogonal (43)
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Def:

The span of a set of vectors {x1,X2,...,Xp} is
n
span({x1,x2,...,Xp}) =< v:iv= Za;x;,a; eR (44)
i=1
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Def:
The span of a set of vectors {x1,X2,...,Xp} is

span({x1,x2,...,Xp}) = {v LV = Za;x;,a; € R} (44)

i=1

n.b. If {x1,x2,...,%,} is linearly independent, then
span({x1,x2,...,xp}) = R".

I I

Example:
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Projection

Def:
The projection of a vector y € R™ onto
span({x1,x2,...,X,}) =R"is

Proj(y; {x1,%2,...,%Xp}) = arg min lly — vl|2 (46)
vespan({xi,x2,....xn})
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Def:
The range of a matrix A € R™*", denoted R(A) is the span of the
columns of A, i.e.

R(A)={veR":v=Ax,xecR"} (47)

Assuming that A is full rank and n < m, the projection of y € R™
onto R(A) is

Proj(y; A) = argmin|lv —yl]2 (48)
vER(A)
= AATA) ATy (49)
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Nullspace

Def:
The nullspace of a matrix A € R™*" denoted N'(A) is the set of
all vectors that equal 0 when multiplied by A, i.e.

N(A)={xeR": Ax =0} (50)
Some properties:
> {w:w=u+v,uc R(AT),v € R(A)} =R"
> R(AT)NN(A) = {0}

This is referred to as orthogonal complements, denoted as
R(AT) =N (A)L
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Determinant

Def:
The determinant of a square matrix A € R"*", denoted |A| or det
A is a function det: R™" — R.

Let Ay;\j € R("=1)x(n=1) pe the matrix that results from deleting
the i*h row and j* column. The general (recursive) formula for the
determinant is

Al = (=D a Ayl (€L ..n) (51)

= le(—l)iJrja,'j‘A\,-’\i’ (VI € 1, ceey n)
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Determinant

Given a matrix

A= (52)

and aset S C R”",
S:{VER":v:Za;a; where 0 < «; <1,i=1,..,n} (53)
i=1

|A| is the volume of S.
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Determinant

Example:
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Determinant

Example:

The matrix rows are:

And |A|= -7
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Determinant

Example:
1 3
A =
3 2
The matrix rows are:
a L a = 3
=131 27 |2
And |A|= -7
(4,5)
(1,3)
a (3,2)
(0,0
STATS 202: Data Mining and Analysis L. Tran
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Determinant

Properties of determinants:
> For A c R™" |A|=|AT|
» For A,B € R"™" |AB|= |A||B|
» For A € R™" |A|= 0 iff A is singular (i.e. non-invertible).

» For A € R™" and A non-singular, |[A1|=1/|A|
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Quadratic form

Given A € R™" and a vector x € R", the quadratic form is the
scalar value

x Ax = zn:x,-(Ax),- = ZH:X,- z”: Ajxi | = Zn: Zn: Ajixix; (56)
i=1 i=1 j=1

i=1 j=1
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Quadratic form

Some properties involving quadratic form:

> A symmetric matrix A € S” is positive definite if for a
non-zero x € R",x"Ax > 0

> A symmetric matrix A € S” is positive semi-definite if for a
non-zero x € R", x"Ax > 0

> A symmetric matrix A € S” is negative definite if for a
non-zero x € R”, xTAx < 0

> A symmetric matrix A € S” is negative semi-definite if for a
non-zero x € R", x"Ax < 0

> A symmetric matrix A € S” is indefinite if it is neither positive
nor negative semidefinite

n.b. Positive definite and negative definite matrices always have
full rank.

STATS 202: Data Mining and Analysis L. Tran 39/101



Eigenvalues & eigenvectors

Given A € R"™" X\ € C is an eigenvalue of A with corresponding
eigenvector x € C" if

Ax=Xx:x#0 (57)

n.b. The eigenvector is (usually) normalized to have length 1
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Eigenvalues & eigenvectors

Given A € R"™" X\ € C is an eigenvalue of A with corresponding
eigenvector x € C" if

Ax=Xx:x#0 (57)

n.b. The eigenvector is (usually) normalized to have length 1

We can write all of the eigenvector equations simultaneously

as
AX = XA (58)

where

| |
X c Ran = |x1 X2 - Xn s A = dlag()\]_, *--))\n) (59)

| |
This implies A = XAX™1
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Eigenvalues & eigenvectors

Some properties:
> trA = 27:1 Aj
> [Al=T A

» The rank of A is equal to the number of non-zero eigenvalues
of A.

» If A is non-singular, then 1/); is an eigenvalue of A~! with
correspondng eigenvector x;, i.e. A71x; = (1/\;)x;

» The eigenvalues of a diagonal matrix D = diag(di, ..., d,) are
just its diagonal entries dy, ..., d,
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Eigenvalues & eigenvectors

Example: For A € S" with ordered eigenvalues
A1 > X2 = Ay,

max x| Ax subject to ||x||3= 1 (60)
x€R"

is solved with x1 corresponding to A;. Similarly, it is solved with x,,
corresponding to A,.

STATS 202: Data Mining and Analysis L. Tran 42/101



Eigenvalues & eigenvectors

Example:

Let A = [1 2

5 1] Find the eigenvalues & eigenvectors.
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Eigenvalues & eigenvectors

Example:
Let A = B ﬂ Find the eigenvalues & eigenvectors.
We want

(A= ADx=0 (61)
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Eigenvalues & eigenvectors

Example:

Let A = [1 2

5 1] Find the eigenvalues & eigenvectors.

We want
(A—=X)x=0 (61)

We want det(A — AI) = 0.

det(A—XI) = (1-X\)?—-22=)X2_-2\-3 (62)
= (A=-3)(\+1) (63)

~A=3,-1
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Eigenvalues & eigenvectors

Finding the eigenvectors: calculating the null spaces of

U (2 )1
B 2 =2 1

vwn-x(@ [ w
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Eigenvalues & eigenvectors

Finding the eigenvectors: calculating the null spaces of

(A — Al
NA=3l) =N ([‘22 _22]> — m (64)
NA+) =N <[§ gD _ [_11] (65)
B i R I
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Singular Value Decomposition

SVD is a way of decomposing matrices.
Given A € R™*" with rank r, 3
Y eR™MUeR™™ NV eR™M,
A=UxV' (67)

Notes:

P> 3l is a diagonal matrix with entries o1, ...,0, > 0 known as
singular values.

» U and V are orthogonal matrices.
» Common uses:

» Least squares models

» Range, rank, null space

» Moore-Penrose inverse
STATS 202: Data Mining and Analysis L. Tran 45/101



Singular Value Decomposition

Some intuition:

A € R™*" can be thought of as a linear transformation, such that
for x € R”,
f(x) = Ax (68)
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Singular Value Decomposition

Some intuition:

A € R™*" can be thought of as a linear transformation, such that
for x € R”,
f(x) = Ax (68)

SVD can be thought of as breaking this into individual steps:

“ﬂfi
—

V* 15

0 )
—_—
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Matrix calculus

Given f : R™*" — R, the gradient of f wrt A € R™*" is

Of(A)  Of(A) of(A)
O0A1; oA, 7 Ay,
OF(A)  OF(R)  of(A)

VAf(A) c RM*n — 8/-}21 3/-?22 . 8A.2n (69)
OF(A) Of(A) OF(A)
OA 1 OA o OAmn

Some properties
> Vu(f(x) + &(x)) = Vxf(x) + Vxg(x)
» For c € R, Vy(cf(x)) = cVx(f(x))
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The Hessian

Given f : R" — R, the Hessian of f wrt x € R" is

ro’f(x)  9%f(x) 92f(x) T
Ox? Ox10x2 Ox10xn
P’f(x)  8f(x) . PPf(x)

2
v)2( f(X) c RN — Ox20x1 03 Ox20xp (70)

0%f(x) 92f(x) . 2f(x)

L Ox,0x1  OxpOx2 ox2

8%f(x) 9?f(x)

n.b. The Hessian is always symmetric, since Dxidy = DO
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Least squares

Given A € R™" b € R™ 5 b ¢ R(A), we want to find x € R" as
close as possible to b (via the Euclidean norm),

|Ax=bl[} = (Ax—b)"(Ax—b) (71)
= x'ATAx—2b"Ax+b'b (72)
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Least squares

Given A € R™" b € R™ 5 b ¢ R(A), we want to find x € R" as
close as possible to b (via the Euclidean norm),

||[Ax —b|]3 = (Ax—b)"(Ax—b) (71)
x ATAx—2b"Ax+b'b (72)

Taking the gradient wrt x, we have

Vi(x"TATAx —2bTAx+b'b) = V,x"ATAx - V,2b"Ax + V, b/
= ATAx—2A"b (74)

L. Tran 49/101
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Least squares

Given A € R™" b € R™ 5 b ¢ R(A), we want to find x € R" as
close as possible to b (via the Euclidean norm),

|Ax=bl[} = (Ax—b)"(Ax—b) (71)
= x'ATAx—2b"Ax+b'b (72)
Taking the gradient wrt x, we have
Vi(x"TATAx —2bTAx+b'b) = V,x"ATAx - V,2b"Ax + V, b/
= ATAx—2A"b (74)

Setting this expression equal to zero and solving for x gives the
normal equations,

x=(ATA)!ATb (75)
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Vandenberghe)

Linear Algebra (Cherney, Denton et al.)

Linear Algebra (Hoffman & Kunze)
Fundamentals of Linear Algebra (Carrell)

Linear Algebra (S. Friedberg A. Insel L. Spence)

STATS 202: Data Mining and Analysis L. Tran 50/101


http://joshua.smcvt.edu/linearalgebra/book.pdf
http://vmls-book.stanford.edu/vmls.pdf
http://vmls-book.stanford.edu/vmls.pdf
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Sample space

The set of all possible values is called the sample space S.

P It's the space where realizations can be produced.
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Sample space

The set of all possible values is called the sample space S.
P It's the space where realizations can be produced.

Example: Tossing a coin

S = {Heads, Tails} (76)
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Sample space

The set of all possible values is called the sample space S.
P It's the space where realizations can be produced.

Example: Tossing a coin
S = {Heads, Tails} (76)

More notation:

» () is the empty set. Can be denoted as () = {}.
» U, B; is the union of sets B;. Formally,
> UX Bi={seS:secBVi}

» B C S means B is a subset of the sample space.

v

Heads, without curly braces, is an element of set B.

v

B¢ = S\ B is the complement of set B
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Probability function

A probability function is a function P : B — [0, 1], where
> P(S)=1
> P(UR;Bi) =2, P(B;) when By, By, ... are disjoint

STATS 202: Data Mining and Analysis L. Tran 53/101



Probability function

A probability function is a function P : B — [0, 1], where
> P(S)=1
> P(UR;Bi) =2, P(B;) when By, By, ... are disjoint

n.b. We can define the domain B many ways, e.g. B =2°
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Probability function

A probability function is a function P : B — [0, 1], where
> P(S)=1
> P(UR;Bi) =2, P(B;) when By, By, ... are disjoint

n.b. We can define the domain B many ways, e.g. B =2°
Example: For flipping a coin, we have

B =2° = {0, {Heads}, { Tails}, { Heads, Tails}} (77)

This implies that

1 B = {Heads, Tails}
3 B = {Head
p(g)={ 2 B~ Heads (79)
5 B={Tails}
0 B=10

n.b. The power set is a 'set of sets’
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Probability function domains

Problem: Power sets don't work well for R.
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Probability function domains

Problem: Power sets don't work well for R.
Solution: Define the domain using o—algebra:

» eB
» BeB=B‘eB
> B1,Bs,...c B=>UX,BieB
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Probability function domains

Problem: Power sets don't work well for R.
Solution: Define the domain using o—algebra:

» eB
» BeB=B‘eB
> B1,Bs,...c B=>UX,BieB

Example:
» The discrete o-algebra:
B =2° = {0, {Heads}, { Tails}, { Heads, Tails}}

» The trivial o-algebra: B=0US = {0, { Heads, Tails}}

n.b. For uncountable sets, we use the Borel o-algebra.
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Probability space

Def:
A probability space is a triple (S, B, P).

» S is the set of possible singleton events
» I3 is the set of questions to ask P
> P maps sets into probabilities

n.b. They represent the ingredients needed to talk about
probabilities

Vv v P

0={1,23} 0 Y% % % 1
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Probability functions

Some properties of P(-)
» P(B)=1- P(B°)
> P()) =0, since P(0) =1— P(S)
» P(AUB) = P(A)+ P(B) — P(AN B), implying that
> P(AUB) < P(A) + P(B)
> P(ANB) > P(A)+ P(B) — 1
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Conditional probability

For events A and B where P(B) > 0, the conditional probability of
A given B (denoted P(A|B)) is

P(AN B)

P(AIB) = ~5ig)

(79)

Example: In an agricultural region with 1000 farms, we want to
know if the farm has vineyards or cork trees.

Cork Trees
Yes No
. Yes | 200 50
Vineyard |\ | 150 | 600

Table: Frequency counts
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Conditional probability

Example: In an agricultural region with 1000 farms, we want to
know if the farm has vineyards or cork trees.

Cork Trees
Yes No
Yes | 20% | 5%
No | 15% | 60%

Vineyard

Table: Joint probabilities

Questions:

» What is the probability of seeing cork trees in a farm with
vineyards?

» Among farms with cork trees or vineyards, what is the
probability of having both?
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Conditional probability

Let's assume the following joint probabilties

Cork Trees
Yes No
Yes | 25% | 25%
No | 25% | 25%

Vineyard

We have that P(AN B) = P(A) - P(B), meaning that they are
independent
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Law of total probability

Let B1,By,...,Bxk € Band P(Bj) >0:i=1,
total probability states that

k

P(A) =) P(B)P(AlB;)

i=1
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Law of total probability

Let By, By,...,Bxk€ Band P(Bj))>0:i=1,..., k. The law of
total probability states that

k

P(A) =Y _P(B)P(AlB) (80)

i=1

The conditional law of total probability states that

P(A|C) = Z P(B;i|C)P(A|B;, C) (81)
i=1
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Bayes' Theorem

Let By, By, ...,Bc € B, P(Bj)>0:i=1,...,k and P(A) > 0.

Then Bayes’ Theorem states that for i =1,...,k
P(B;)P(A|B;
P(Bi|A) k( )P(A|Bi) (82)
Zj:l P(BJ)P(A|BJ)

n.b. Can be proven using the def of conditional probability
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Bayes' Theorem

Example: You test positive for disease X, which has 90%
sensitivity and a FPR of 10%. Past genetic screening has indicated
that you have a 1 in 10,000 chance of having the disease. What is
the probability of having disease X?
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Bayes' Theorem

Example: You test positive for disease X, which has 90%
sensitivity and a FPR of 10%. Past genetic screening has indicated
that you have a 1 in 10,000 chance of having the disease. What is
the probability of having disease X?
P(A|B1)P(B1)
PEA = paBpE) + PaBPE) &Y
(0.9)(0.0001)
(0.9)(0.0001) + (0.1)(0.9999)

=0.0009 (84)
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Bayes' Theorem

Example: You test positive for disease X, which has 90%
sensitivity and a FPR of 10%. Past genetic screening has indicated
that you have a 1 in 10,000 chance of having the disease. What is
the probability of having disease X?
P(A|B1)P(B1)
P(B1|A) = 83
BN = pasre) + P@ABPE) )

(0.9)(0.0001) B
(0.9)(0.0001) + (0.1)(0.9999) _ 0009 (8%)

Notes:
» P(By) is often referred to as the prior probability

» P(Bi|A) is often referred to as the posterior probability
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Random variables

A random variable is a (Borel measureable) function
X:5—=R
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Random variables

A random variable is a (Borel measureable) function

X:S—=R
Example: For coin tossing, we have X : {Heads, Tails} — R,
where
1 if s = Head
X(E) =00 oo (85)
0 if s= Tails

Sample Space  Random Variable Probability

Heads
Tails

Rangeof random variable
Domain of probability mass function

Domain of random variable
uolpuny ssew AJigeqo.d jo abuey
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Cumulative distribution function

The cumulative distribution function (cdf) of a random variable X
is the function Fx : R — [0, 1].
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Cumulative distribution function

The cumulative distribution function (cdf) of a random variable X
is the function Fx : R — [0, 1].

Example: For coin tossing, we have

X : {Heads, Tails} — R,

we have
where
0 ifx<O
X(s) = 1 ?fs:Heiads (86) Fx(x)=4q¢3 if0<x<1
0 if s= Tails 1 ifx>1
(87)
L. Tran 64/101
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Cumulative distribution function

The cumulative distribution function (cdf) of a random variable X
is the function Fx : R — [0, 1].

Example: For coin tossing, we have

X : {Heads, Tails} — R,

we have
where
0 ifx<O
X(s) = 1 ?fs:Heiads (86) Fx(x)=4q¢3 if0<x<1
0 if s= Tails 1 ifx>1
(87)
: "‘ Li. Tran 64/101
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Cumulative distribution function

n.b. We have two ways of thinking about probabilities:

1. Probability functions
2. Cumulative distribution functions

Question: Which one should we use?
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Cumulative distribution function

n.b. We have two ways of thinking about probabilities:

1. Probability functions
2. Cumulative distribution functions

Question: Which one should we use?

The Correspondence Theorem: Let Px(-) and Py(-) be
probability functions and Fx(-) and Fy(-) be their associated cdfs.
Then

Px(-) = Py(:) < Fx(:)=Fy() (88)
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Cumulative distribution function

Some properties for cdfs:

> lim F(x)=0

X=>—00

> | =
Aim Fx) =1

» F(-) is non-decreasing

» F(-) is right-continuous

Sample Space  Random Variable Probability

Heads

Tails

Domain of random variable
uolpuny ssew AJjigeqo.ad jo abuey

Rangeof random variable
Domain of probability mass function
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Quantile function

Let X be a continuous rv and one-to-one over the the possible
values of X. Then

F~Y(p) =inf{x eR:p < F(x)} (89)

Is the quantile function of X.
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Quantile function

Let X be a continuous rv and one-to-one over the the possible
values of X. Then

F~Y(p) =inf{x eR:p < F(x)} (89)

Is the quantile function of X. Let X be a discrete rv and
one-to-one over the the possible values of X. Then F~1(p) states
that we take the smallest value of x.

Example:

p3

P2
Prfoe T

0 41 q2 q3
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Nature of random variables

A random variable X is
> Discrete if 3fx : R —[0,1] > Fx(x) = > .o, fx(t),x €R
> fx is referred to as the probability mass function (pmf)
> Continuous if 3fx : R — Ry 2 Fx(x) = [*__fx(t)dt,x € R
> fx is referred to as the probability density function (pdf).
» n.b. We can have multiple pdf's consistent with the same cdf.

» n.b. For any specific value of a continuous random variable, its
probability is 0, i.e. P({x}) =0Vx € R.
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Nature of random variables

A random variable X is
> Discrete if 3fx : R —[0,1] > Fx(x) = > .o, fx(t),x €R
> fx is referred to as the probability mass function (pmf)
> Continuous if 3fx : R — Ry 2 Fx(x) = [*__fx(t)dt,x € R
> fx is referred to as the probability density function (pdf).
» n.b. We can have multiple pdf's consistent with the same cdf.

» n.b. For any specific value of a continuous random variable, its
probability is 0, i.e. P({x}) =0Vx € R.

n.b. pmf’'s and pdf's sum to 1, i.e.
» f:R — [0,1] is the pmf of a discrete RV iff 3 f(x) =1
> f:R — Ry is the pdf of a continuous RV iff [ f(x)dx =1
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Nature of random variables

Example #1: Coin tossing

0 ifx<O
Fx(x)=4¢3 if0<x<1 (90)
1 ifx>1

Here, Fx is a step function with pmf

1 x
fx(x) = {2 €10.1) (91)

0 otherwise
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Nature of random variables

Example #2: Uniform distribution on (0,1)

0 ifx<0
Fx(x)=<x if0<x<1 (92)
1 ifx>1

Here, Fx is a continuous function. Two consistent pdfs
include

6O={; e 69 S00= 15 T 09

STATS 202: Data Mining and Analysis L. Tran 70/101



Transformations of random variables

Suppose Y = g(X), where g : R — R and X is a discrete rv with
cdf Fx.
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Transformations of random variables

Suppose Y = g(X), where g : R — R and X is a discrete rv with
cdf Fx.

Since the function is applied to a rv, Y is also a random variable
with probability function

F(y)=PreX)=y) = 3 f(x) (95)
x:g(x)=y
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Transformations of random variables

Suppose Y = g(X), where g : R — R and X is a discrete rv with
cdf Fx.

Since the function is applied to a rv, Y is also a random variable
with probability function

Ary) =PreX) =y) = 3 () (95)
x:g(x)=y
Example:

Let X be a uniform random variable on {—n,—n+1,...,n —1,n}.
Then Y = | X]| has mass function

A ifx=0
fr(y) =929t (96)
g fx#0
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Transformations of random variables

Suppose Y = g(X), where g : R — R and rv X with cdf Fx.
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Transformations of random variables

Suppose Y = g(X), where g : R — R and rv X with cdf Fx.

Then Y is also a random variable with cdf

Fr(y) = P(Y <) = P(e00) < y) = [ x: £() < yi(x)ox

(97)
We can get the probability function by taking the derivative
0
fi =—F 98
y(¥) dy v () (98)
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Transformations of random variables

Suppose Y = g(X), where g : R — R and rv X with cdf Fx.

Then Y is also a random variable with cdf

Fr(y) = P(Y <) = P(e00) < y) = [ x: £() < yi(x)ox

(97)
We can get the probability function by taking the derivative
0
fi =—F 98
y(¥) dy v () (98)
Example:
Let X be a uniform rv on [~1,1]. Then Y = X2 has cdf
Fy(y) = Py(Y <y) = Px(X* < y) = Px(—y"*X < y'/?)
yi2 (99)
:/ f(x)dx = y*/?
y1/2
and fy(y) = 5, Fy(v) = 5,17
STATS 202: Data Mining and Analysis L. Tran
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Affine transformations

Suppose Y = g(X) =aX + b,a>0,bc R. Then

P(Y<y):P(aX+b<y):P<X<y;b):I_—X<y—b>
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Affine transformations

Suppose Y = g(X) =aX + b,a>0,bc R. Then

P(Y<y):P(aX+b<y):P<X<y;b>:I_—X<y—b>

If a <0, then

P(YSY)ZP(aX+bSy)=P<XZy_b>:1—FX (;
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Affine transformations

Suppose Y = g(X) =aX + b,a>0,bc R. Then

P(Y<y):P(aX+b<y):P<X<y;b>:I_—X<y—b>

a
(100)
If a <0, then
y—b y—b
P(Y <y)=P(aX+b<y) =P (X =" | =1-Fx (=
(101)
In general, as long as the transformation Y = g(X) is monotonic,
then 5
A = e )| ) (102
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References

» Grinstead & Snell Chapters 1,2,4
» DeGroot & Schervish Chapters 1,2,3
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Statistics
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Expectation

The expected value of rv X is defined as

E[X] = > XEx (x) if X is discr.ete (103)
[ xfx(x)dx if x is continuous

For functions g of X,

S 8(x)fx(x) if x is discrete

104
[ g(x)fx(x)dx if x is continuous (104)

Elg(X)] = {

n.b. In general, E[g(X)] # g(E[X])
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Expectation

Examples:

flay)

fey)

Sixy)
2 fixg)
foy)
EQX)
X X e ) A *
fx)
E(X) x
L. Tran 77/101
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Expectation

Important: Expectations might not exist!

Example: Suppose fx(x) = 712 defined on [1,00]. Then

E[X] = /xfx(x)dx _ /xldx _ / %dx oo (105)

X2
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Expectation

Important: Expectations might not exist!

Example: Suppose fx(x) = 712 defined on [1,00]. Then

1 1
E[X] = /xfx(x)dx = /xx2dx:/xdx: 00 (105)
Some properties of expectations:

» Linearity: E[ag(X) + bh(X)] = E[ag(X)] + E[bh(X)]

» Order preserving:
g(X) < h(X),¥x € R = E[g(X)] < E[h(X)]
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Variance

The variance of rv X is defined as

var(X) = E[(X — u)?] - p = E[X] (106)
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Variance

The variance of rv X is defined as
var(X) = E[(X — )] : p = E[X] (106)

Some notes:
» If E[X] doesn't exist then var(X) doesn't exist.
» var(X) can be infinite.

» The standard deviation o of X is \/var(X).
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Variance

With some algebra, we see that

var(X) = E[(X —p)?] (107)
= E[X?—2Xu + 1] (108)

= E[X?] - E[2Xy] + E[1?] (109)

= E[X?] - (110)

E[X?] — E[X]? (111)
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Variance

Some properties:
» If X is bounded, then var(X) exists and is finite.
» var(X) =0 <= P(X = c) =1 for some constant c.
» var(cX) = c?var(X) for some constant c.

» variance is linear, i.e. var(X; + Xo) = var(X1) + var(Xz).
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Moments

The k" moment of rv X is defined as

EX*]=u, : k€N (112)
The k' central/centered moment of rv X is defined as
E[(X — )" = e : k €N (113)
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Moments

The k" moment of rv X is defined as

EX*]=u, : k€N (112)
The k' central/centered moment of rv X is defined as
E[(X — )" = e : k €N (113)

Notes:
> 4, exists if and only if E[|X|¥] < oc.
> If 1) exists, then for all j < k, 1 also exists.
» Variance is .
> Skewness is 3 /0.

> Kurtosis is jiq/0*.
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Moments

= B[X] = [ ()b = () =0 (114)
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Moments

by = B[X] = [ xf(x) = ()] =0 (114)
n.b. For the normal distribution, xfx(x) = —a%fx(x).

= E[(X — 0] = E[(X 0] = EX?] = [ f(x)ox (115)

using integration by parts, we get

/x2fX(x)dx = —xfx(x)|%% —i—/oo fx(x)dx =1 (116)

=0
=1
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Moment generating function

Moment generating functions (mgf) are used to calculate the
moments of a rv. The mgf of a rv X is a function Mx : R = R,
such that

Mx(t) =E[e*]:t e R (117)
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Moment generating function

Moment generating functions (mgf) are used to calculate the
moments of a rv. The mgf of a rv X is a function Mx : R = R,
such that

Mx(t) =E[e*]:t e R (117)

Notes:
> The mgf is a function of t; X is integrated out by E.
» The mgf only applies if the moments of the rv exists.

» If two rv X, Y have the same mgf (i.e. Mx(t) = My(t)),
then they have the same distribution.

» Even if a rv has moments, the mgf may yield infinity (e.g.
log-normal distribution).
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Moment generating function

Taking the derivative of the mgf, we see that

%Mx(t) = % / e™ fx(x)dx = /X - e™fx(x)dx (118)

What happens when t = 07
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Moment generating function

Taking the derivative of the mgf, we see that

%Mx(t) = % / e™ fx(x)dx = /X - e™fx(x)dx (118)

What happens when t = 07

/x e fx(x)dx = /xfx(x)dx = E[X] (119)
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Moment generating function

Taking the derivative of the mgf, we see that

%Mx(t) = % / e™ fx(x)dx = /X - e™fx(x)dx (118)

What happens when t = 07

/x e fx(x)dx = /xfx(x)dx = E[X] (119)

What happens when t = 0 for the k" derivative?
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Moment generating function

Taking the derivative of the mgf, we see that

%Mx(t) = % / e™ fx(x)dx = /X - e™fx(x)dx (118)

What happens when t = 07

/x e fx(x)dx = /xfx(x)dx = E[X] (119)

What happens when t = 0 for the k" derivative?
iMx(t) = /xk - e™fx(x)dx (120)
otk

At t =0, we get 2 Mx(t)]e—o= E[X*]

Evaluating the k! derivative at t = 0 gives us the k!’
moment of X.
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Moment generating function

Example: The standard normal distribution

Mx(t) = E[efx]:/efxfx(x)dx (121)
= /etxx/%exp <—X22> dx (122)

- / \/%exp <—(X > t)2) exp (i) dx (123)
— exp <t22>/\/127rexp (- > >dx (124)
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Moment generating function

The mgf for affine transformations is straight forward,
e.g. If Y =aX + b, then My(t) = eP*Mx(at).

Example: Let X = pu+o0Z:Z ~ N(0,1). Then

Mx(t) = MlH-UZ(t) = eMtMZ(O't) _ eute%g2t2 _ e’“+%”2t2
(126)
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Moment generating function

The mgf for affine transformations is straight forward,
e.g. If Y =aX + b, then My(t) = eP*Mx(at).

Example: Let X = i+ 0Z : Z ~ N(0,1). Then
Mx(t) = MlH-UZ(t) = eMtMZ(O't) _ eute%g2t2 _ e’“+%”2t2

(126)
Another example:

Let Xi,...,Xn " Ppand ¥ =7, X;. Then
My(t) = E[et]=E[e!Xit +X)] = [H etX’] (127)
i=1
- [k [efxf} = [ mx(t) (128)
i=1 i=1
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Distributions

Most useful distributions have names, e.g.
» Normal distribution

Uniform distribution

Bernoulli distribution

Binomial distribution

Poisson distribution

vV v.v. v Y

Gamma distribution
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Normal distribution

A rv X follows a Normal distribution, denoted as X ~ N(u,c?)
with mean p and variance o2, if X is continuous with pdf

fx(x) = \/;7 exp <—(X2;f)2> xeR  (129)

Note:

If Z ~ N(0,1) then X = p+ 0Z ~ N(u,0?). It follows that
» E[X]=E[pu+ cZ] = p+ oE[Z] = p.
» var(X) = var(u + 0Z) = d?var(Z) = o°.
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Normal distribution

A rv X follows a Normal distribution, denoted as X ~ N(u,c?)
with mean p and variance o2, if X is continuous with pdf

Fe(x) = \/2;7 exp <—(X2;§‘)2> xER  (129)

Note:

If Z ~ N(0,1) then X = p+ 0Z ~ N(u,0?). It follows that
» E[X]=E[pu+ cZ] = p+ oE[Z] = p.
» var(X) = var(u + 0Z) = d?var(Z) = o°.

Most well known distribution due to:

1. Good mathematical properties

2. Often (approximately) observed in the real world (e.g.
heights, weights, etc.)
3. Central limit theorem
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Central limit theorem

Let X1, ..., Xy 2 Py, where E[X;] = u and var(X;) = 2.

Then Lar o
lim P (”/(X_“’) < x) — ®(x) (130)

n—o00 o

where ®(x) is the cdf for the standard normal distribution.
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Central limit theorem

Let X1, ..., Xy 2 Py, where E[X;] = u and var(X;) = 2.

Then Lar o
lim P (”/(X_“’) < x) — ®(x) (130)

n—o0 o
where ®(x) is the cdf for the standard normal distribution.

Example: The sample mean
- 1
Xo==> X (131)

The 95% Cl: X, % z, 58,
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Uniform distribution

A rv X follows a Uniform distribution U(a, b) if X is continuous
with pdf

fx(x) = {"1" x € 2. 5] (132)

0 otherwise

Under U(a, b), all observations are “equally likely"

bt t

E[X] = 252, var(X) = (b a) ,and Mx(t) = ﬁ'
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Uniform distribution

A rv X follows a Uniform distribution U(a, b) if X is continuous
with pdf

fx(x) = {"1" x € 2. 5] (132)

0 otherwise

Under U(a, b), all observations are “equally likely"

bt

E[X] = 2, var(X) = 325, and My(t) = =0

Note: if X ~ U(a, b), then X = (b—a)X +a: X ~ U(0,1)
and

0 otherwise

o (x) = {1 x€[0.1] (133)

STATS 202: Data Mining and Analysis L. Tran 91/101



Bernoulli distribution

A rv X follows a Bernoulli distribution Ber(p) if X is discrete with
pmf

p if x=1
fx(x)=<¢1—p ifx=0 (134)
0 otherwise

E[X] = p, var(X) = p(1 — p), and Mx(t) = e'p+ (1 — p).
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Binomial distribution

A rv X follows a Binomial distribution Bin(n, p) if X is discrete
with pmf

(135)

MNpX(1—p)"> ifxe{0,1,...n
(%) = (P2 —p) { }
0 otherwise

E[X] = np, var(X) = np(1 — p), and
Mx(t) = (e'p + (1 = p))".

If X1, ..., Xn % Ber(p), then Y = Xy + - - + X,, follows
B(n, p).
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Negative Binomial distribution

A rv X follows a Negative Binomial distribution NB(r, p) if X is
discrete with pmf

r+x—1 X r H
1-— f 1,..
0 otherwise

E[X] = "2 var(X) = “152) and
r
When r = 1, we refer to it as the Geometric distribution.

» It has a memoryless property.
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Poisson distribution

A rv X follows a Poisson distribution Pois(\) if X is discrete with
pmf

e Y xeN
fx(x) = x! 137
x() {0 otherwise (137)

E[X] = A, var(X) = A, and Mx(t) = eMe—1),
Some notes:
» Bin(n, p) = Pois(np) when n is large and np is small.

> “Poisson Processes” are typically used to model rates,
e.g. mortality rates

1. The number of events in each fixed time interval t has a
Poisson distribution with mean \t.

2. The number of events in each time interval is independent.

STATS 202: Data Mining and Analysis L. Tran 95/101



Gamma distribution

A rv X follows a Gamma distribution Gamma(a, 3) if X is
continuous with pdf

1 a—1 B >0
fx(x) = { T@F ST T (138)
0 otherwise

where ['(x) = [;~ t* te~tdt : a > 0.
E[X] = af, var(X) = a3?, and

Mx(t):<1—%) a:t<ﬁ.
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Gamma distribution

A rv X follows a Gamma distribution Gamma(a, 3) if X is
continuous with pdf

b= {(I;(al)ﬂaxa © Z)(th>e|(')wise (138)
where ['(x) = [;~ t* te~tdt : a > 0.
E[X] = af, var(X) = a3?, and
Mx(t) = (1 — %)_a Tt < B
Notes:

> r(al),Ba is often referred to as the ‘normalizing constant’.

» When a =1, we get the exponential distribution.
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Beta distribution

A rv X follows a Beta distribution Beta(«, 3) if X is continuous
with pdf
M a—1 _ 8—1
fx(x) = Mo (1 —x) 0<x<1 (139)
0 otherwise
_ _« o of
EX] =355 var(X) = Grppterarny:

Mx(t) = rr((aa)-ﬁl_-(ﬂﬁ)) 01 xOTk=1(1 — x)A~1dkx.

n.b. Very popular distribution in Bayesian statistics.

and
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Multinomial distribution

Suppose rv X = (X, ..., Xk) represents counts of k different
classes. Then it follows a Multinomial distribution Multi(ps, ..., pk)
if it has pdf

" OVpXpk x>0, x>0
fx(x) = (XL...,Xk)Pl P X1 2 ,. Xk > (140)
0 otherwise

where n = Zf-;l Xi.

E[Xi] = np, var(X;) = np;j(1 — p;), and
Cov(Xi, Xj) = —np;p;.
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Dirac delta function

While not technically a pdf, often used for e.g. mixture of discrete
distributions

The Dirac delta function is defined as é : R — RU oo >

sy = too x=0 (141)
0 otherwise
and [ §(x)dx =1
The sifting property:
/ F(x)3(x — a)dx = £(a) (142)
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Dirac delta function

Example: Let

U0,1) wp. l—«
Then fy(y) = ad(y — 1) + (1 — o)I(y € [0,1])

v {1 W.p. « (143)
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Dirac delta function

Example: Let

U0,1) wp. l—«
Then fy(y) = ad(y — 1) + (1 — o)I(y € [0,1])

v {1 W.p. « (143)

E[Y] = / T y(as(y — 1) + (1 - a)l(y € [0.1]))dy (144)

(e 9]

%) 1
- o / y(6y — 1)dy + (1 - a) /O ydy  (145)

y y2 1
= 04—1—(1—04)7]0 (146)
1
_ ;O‘ (148)
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