# Lecture 9: Support Vector Machines STATS 202: Data Mining and Analysis 

Linh Tran<br>stat202@gmail.com (2)<br>Department of Statistics<br>Stanford University

July 26, 2023

## Announcements

- Midterm is done being graded.
- Homework 2 grading is almost complete.
- Homework 3 is up.
- Due next Wednesday.
- Final projects due in 3 weeks.
- Final exam is on August 19 (7 PM - 10 PM)
- Please send Piazza messages for accommodation requests.
- Survey is still up (closing this Friday)

Support Vector Machines

- Maximal margin classifier
- Support vector classifier
- Support vector machine


## Support Vector Machines



Support vector machines are (generally) classifiers

- Linear (like logistic regression)
- Non-probabilistic (unlike logistic regression)


## Hyperplanes and normal vectors

Consider a $p$-dimensional space of predictors

- A hyperplane is an affine space which separates the space into two regions


## Hyperplanes and normal vectors

Consider a $p$-dimensional space of predictors

- A hyperplane is an affine space which separates the space into two regions
- The normal vector $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$, is a unit vector $\sum_{j=1}^{p} \beta_{j}^{2}=\|\beta\|=1$ which is orthogonal to the hyperplane


## Hyperplanes and normal vectors

Consider a $p$-dimensional space of predictors

- A hyperplane is an affine space which separates the space into two regions
- The normal vector $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$, is a unit vector $\sum_{j=1}^{p} \beta_{j}^{2}=\|\beta\|=1$ which is orthogonal to the hyperplane
- The deviation between a point $\left(x_{1}, \ldots, x_{p}\right)$ and the hyperplane is the dot product
- If the hyperplane goes through the origin

$$
\begin{equation*}
x \cdot \beta=x_{1} \beta_{1}+\cdots+x_{p} \beta_{p} \tag{1}
\end{equation*}
$$

## Hyperplanes and normal vectors

Consider a $p$-dimensional space of predictors

- A hyperplane is an affine space which separates the space into two regions
- The normal vector $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$, is a unit vector $\sum_{j=1}^{p} \beta_{j}^{2}=\|\beta\|=1$ which is orthogonal to the hyperplane
- The deviation between a point $\left(x_{1}, \ldots, x_{p}\right)$ and the hyperplane is the dot product
- If the hyperplane goes through the origin

$$
\begin{equation*}
x \cdot \beta=x_{1} \beta_{1}+\cdots+x_{p} \beta_{p} \tag{1}
\end{equation*}
$$

- If the hyperplane is displaced from the origin by $-\beta_{0}$

$$
\begin{equation*}
\beta_{0}+x \cdot \beta=\beta_{0}+x_{1} \beta_{1}+\cdots+x_{p} \beta_{p} \tag{2}
\end{equation*}
$$

## Hyperplanes and normal vectors

Consider a $p$-dimensional space of predictors

- A hyperplane is an affine space which separates the space into two regions
- The normal vector $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$, is a unit vector $\sum_{j=1}^{p} \beta_{j}^{2}=\|\beta\|=1$ which is orthogonal to the hyperplane
- The deviation between a point $\left(x_{1}, \ldots, x_{p}\right)$ and the hyperplane is the dot product
- If the hyperplane goes through the origin

$$
\begin{equation*}
x \cdot \beta=x_{1} \beta_{1}+\cdots+x_{p} \beta_{p} \tag{1}
\end{equation*}
$$

- If the hyperplane is displaced from the origin by $-\beta_{0}$

$$
\begin{equation*}
\beta_{0}+x \cdot \beta=\beta_{0}+x_{1} \beta_{1}+\cdots+x_{p} \beta_{p} \tag{2}
\end{equation*}
$$

- The sign of the dot product tells us on which side of the hyperplane the point lies


## The maximal margin classifier



Suppose we have a classification problem with response $Y=-1$ or $Y=1$.

## The maximal margin classifier

Suppose we have a classification problem with response $Y=-1$ or $Y=1$.

- If the classes can be separated (most likely) there will be an infinite number of hyperplanes separating the classes
- Which one should we choose?




## The maximal margin classifier

Idea: Select the classifier with the maximal margin

- Draw the largest possible empty margin around the hyperplane
- Out of all possible hyperplanes that separate the 2 classes, choose the one with the widest margin (in both directions)


We can frame this as an optimization problem, i.e.

$$
\begin{equation*}
\max _{\beta_{0}, \beta_{1}, \ldots, \beta_{p}} M \tag{3}
\end{equation*}
$$

subject to

- $\|\beta\|=1$
- $y_{i} \underbrace{\left(\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}\right)}_{\text {How far } x_{i} \text { is from }} \geq M \forall i=1, \ldots, n$

How far $x_{i}$ is from the hyperplane
where $M$ is the width of the margin (in either direction)
n.b. the sign of $\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}$ indicates the class

This is numerically hard to optimize

## Estimating the maximal margin classifier

We can reformulate the problem by normalizing for $\|\beta\|$, i.e.

$$
\begin{equation*}
\max _{\beta_{0}, \beta} M \tag{4}
\end{equation*}
$$

subject to

$$
\frac{1}{\|\beta\|} y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right) \geq M \forall i=1, \ldots, n
$$

## Estimating the maximal margin classifier

We can reformulate the problem by normalizing for $\|\beta\|$, i.e.

$$
\begin{equation*}
\max _{\beta_{0}, \beta} M \tag{4}
\end{equation*}
$$

subject to

$$
\frac{1}{\|\beta\|} y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right) \geq M \forall i=1, \ldots, n
$$

or, equivalently,

$$
y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right) \geq M\|\beta\| \forall i=1, \ldots, n
$$

## Estimating the maximal margin classifier

Setting $\|\beta\|=1 / M$, we have

$$
\begin{equation*}
\max _{\beta_{0}, \beta} \frac{1}{\|\beta\|}=\min _{\beta_{0}, \beta}\|\beta\|=\min _{\beta_{0}, \beta} \frac{1}{2}\|\beta\|^{2} \tag{5}
\end{equation*}
$$

subject to

- $y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right) \geq 1 \forall i=1, \ldots, n$

This is a quadratic optimization problem (i.e. easier to solve)

- Typically solved using Lagrange duality


## Support vectors

The vectors (i.e. observations) that fall on the margin (and determine the solution) are called support vectors:

n.b. Only these points affect our estimation of the separating hyperplane.

## The support vector classifier

Problem: It is not always possible (or desireable) to separate the points using a hyperplane.

## Support vector classifier:

- Relaxes the maximal margin classifier, using a soft margin
- Allows a number of points points to be on the wrong side of the margin or hyperplane




## The support vector classifier

Building this into our optimization problem gives:

$$
\begin{equation*}
\max _{\beta_{0}, \beta, \epsilon} M \tag{6}
\end{equation*}
$$

subject to

- $\|\beta\|=1$
- $y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right) \geq M\left(1-\epsilon_{i}\right) \forall i=1, \ldots, n$
- $\epsilon_{i} \geq 0 \forall i=1, \ldots, n$ and $\sum_{i=1}^{n} \epsilon_{i} \leq C$
where
- $M$ is the width of the margin (in either direction)
- $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ are called slack variables
- $C$ is called the budget


## Tuning the budget, $C$



Higher $C$ means:

- More tolerance for errors
- Larger (estimated) margins


## Bias-variance trade off

$C$ is typically chosen via cross-validation

- Larger C leads to classifers that have lower variance, but potentially have higher bias
- Smaller $C$ leads to classifiers that are highly fit to the data, which may have low bias but high variance
- If $C$ is too low we can overfit
- e.g. With the maximal margin classifier ( $C=0$ ), adding one observation can dramatically change the classifier




## Estimating the support vector classifier

(Similar to before) we can reformulate the problem, i.e.

$$
\begin{equation*}
\min _{\beta_{0}, \beta, \epsilon} \frac{1}{2}\|\beta\|^{2}+D \sum_{i=1}^{n} \epsilon_{i} \tag{7}
\end{equation*}
$$

subject to

$$
\begin{aligned}
& \Rightarrow y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right) \geq\left(1-\epsilon_{i}\right) \forall i=1, \ldots, n \\
& >\epsilon_{i} \geq 0 \forall i=1, \ldots, n
\end{aligned}
$$

## Estimating the support vector classifier

(Similar to before) we can reformulate the problem, i.e.

$$
\begin{equation*}
\min _{\beta_{0}, \beta, \epsilon} \frac{1}{2}\|\beta\|^{2}+D \sum_{i=1}^{n} \epsilon_{i} \tag{7}
\end{equation*}
$$

subject to

- $y_{i}\left(\beta_{0}+x_{i}^{\top} \beta\right) \geq\left(1-\epsilon_{i}\right) \forall i=1, \ldots, n$
- $\epsilon_{i} \geq 0 \forall i=1, \ldots, n$

The penalty $D \geq 0$ is inversely related to $C$, i.e.

- Smaller $D$ means wider (estimated) margins
- Larger $D$ means narrower (estimated) margins

This is (still) a quadratic optimization problem

## Lagrange duality

When dealing with optimization constraints


$$
\begin{equation*}
\min _{x} x^{2}: x \geq b \tag{8}
\end{equation*}
$$

can be re-written as a
(Lagrangian) loss function

$$
\begin{equation*}
L(x, \alpha)=x^{2}-\alpha(x-b) \tag{9}
\end{equation*}
$$

## Lagrange duality

When dealing with optimization constraints

can be re-written as a
(Lagrangian) loss function

$$
\begin{equation*}
L(x, \alpha)=x^{2}-\alpha(x-b) \tag{9}
\end{equation*}
$$

## Estimating the support vector classifier

## Similar to the Maximal Margin Classifier:

- We can apply a Lagrange multipliers for our (constrained) optimization problem.
- e.g. Karush-Kuhn-Tucker multipliers.
- This reduces our problem to finding $\alpha_{1}, \ldots, \alpha_{n}$ such that:

$$
\begin{equation*}
\max _{\alpha} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{i^{\prime}=1}^{n} \alpha_{i} \alpha_{i^{\prime}} y_{i} y_{i^{\prime}} \underbrace{\left(x_{i} \cdot x_{i^{\prime}}\right)}_{\text {inner product }} \tag{11}
\end{equation*}
$$

subject to

- $0 \leq \alpha_{i} \leq D \forall i=1, \ldots, n$
- $\sum_{i} \alpha_{i} y_{i}=0$

This only depends on the training sample inputs through the inner products $\left(x_{i} \cdot x_{j}\right)$ for every pair of points $i, j$

## Kernel matrix

A key property of support vector classifiers:

- To find the hyperplane and make predictions all we need is the dot product between any pair of input vectors:

$$
\begin{equation*}
K(i, k)=\left(x_{i} \cdot x_{k}\right)=\left\langle x_{i}, x_{k}\right\rangle=\sum_{j=1}^{p} x_{i j} x_{k j} \tag{12}
\end{equation*}
$$

- We call this the kernel matrix.


## Non-linear boundaries

The support vector classifier can only produce a linear boundary.

## Example:



## Non-linear boundaries

Recall: In logistic regression, we dealt with this problem by adding transformations of the predictors, e.g.

- For a linear boundary:

$$
\begin{equation*}
\log \left[\frac{P(Y=+1 \mid X)}{P(Y=-1 \mid X)}\right]=\underbrace{\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}}_{\text {set equal to } 0 \text { and solve for } X_{1}, X_{2}} \tag{13}
\end{equation*}
$$

- For a quadratic boundary:

$$
\begin{equation*}
\log \left[\frac{P(Y=+1 \mid X)}{P(Y=-1 \mid X)}\right]=\underbrace{\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1}^{2}}_{\text {set equal to } 0 \text { and solve for } X_{1}, X_{2}} \tag{14}
\end{equation*}
$$

## Non-linear boundaries

For support vector classifiers: We can do the same thing, e.g.

- For a linear hyperplane:

$$
\begin{equation*}
\underbrace{\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}=0}_{\text {estimate } \beta^{\prime} \text { s directly }} \tag{15}
\end{equation*}
$$

- Projecting onto a $3 D$ space $\left(X_{1}, X_{2}, X_{1}^{2}\right)$ :

$$
\begin{equation*}
\underbrace{\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1}^{2}=0}_{\text {estimate } \beta^{\prime} \text { 's directly }} \tag{16}
\end{equation*}
$$

- Still a linear boundary, but now in 3D space
- Boundary is now quadratic in $X_{1}$


## Non-linear boundaries

## Example projection:




Left: Sample space under $\left(X_{1}, X_{2}\right)$
Right: Sample space under $\left(X_{1}, X_{2}, X_{1}^{2} \cdot X_{2}^{2}\right)$

## Non-linear boundaries

## One approach:

- Add polynomial terms up to degree d, i.e.

$$
Z=\left(X_{1}, X_{1}^{2}, \ldots, X_{1}^{d}, X_{2}, X_{2}^{2}, \ldots, X_{2}^{d}, \ldots, X_{p}, X_{p}^{2}, \ldots, X_{p}^{d}\right)(17)
$$

- Fit a support vector classifier on the expanded set of predictors


## Non-linear boundaries

## One approach:

- Add polynomial terms up to degree d, i.e.

$$
Z=\left(X_{1}, X_{1}^{2}, \ldots, X_{1}^{d}, X_{2}, X_{2}^{2}, \ldots, X_{2}^{d}, \ldots, X_{p}, X_{p}^{2}, \ldots, X_{p}^{d}\right)(17)
$$

- Fit a support vector classifier on the expanded set of predictors

Question: Does this make the computation more expensive?

## Non-linear boundaries

## One approach:

- Add polynomial terms up to degree d, i.e.

$$
Z=\left(X_{1}, X_{1}^{2}, \ldots, X_{1}^{d}, X_{2}, X_{2}^{2}, \ldots, X_{2}^{d}, \ldots, X_{p}, X_{p}^{2}, \ldots, X_{p}^{d}\right)(17)
$$

- Fit a support vector classifier on the expanded set of predictors

Question: Does this make the computation more expensive?

- Recall that all we need to compute is the dot product:

$$
\begin{equation*}
x_{i} \cdot x_{k}=\left\langle x_{i}, x_{k}\right\rangle=\sum_{j=1}^{p} x_{i j} x_{k j} \tag{18}
\end{equation*}
$$

- With the expanded set of predictors, we need:

$$
\begin{equation*}
z_{i} \cdot z_{k}=\left\langle z_{i}, z_{k}\right\rangle=\sum_{j=1}^{p} \sum_{\ell=1}^{d} x_{i j}^{\ell} \chi_{k j}^{\ell} \tag{19}
\end{equation*}
$$

## Kernels

Rather than expanding our predictors, we could instead use kernels $K(i, k)$ :

- Always positive semi-definite, i.e. it is symmetric and has no negative eigenvalues
- Quantifies the similarity of two observations


## Example:

Our support vector classifier is equivalent to using the (linear) kernel

$$
\begin{equation*}
K\left(x_{i}, x_{i}^{\prime}\right)=\sum_{j=1}^{p} x_{i j} x_{i^{\prime} j} \tag{20}
\end{equation*}
$$

## The kernel trick

## Expand predictor set:

- Find a mapping $\Phi$ which expands the original set of predictors $X_{1}, \ldots, X_{p}$. For example,

$$
\Phi(X)=\left(X_{1}, X_{2}, X_{1}^{2}\right)
$$

- For each pair of samples, compute:

$$
K(i, k)=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{k}\right)\right\rangle .
$$

## The kernel trick

## Expand predictor set:

- Find a mapping $\Phi$ which expands the original set of predictors $X_{1}, \ldots, X_{p}$. For example,

$$
\Phi(X)=\left(X_{1}, X_{2}, X_{1}^{2}\right)
$$

- For each pair of samples, compute:

$$
K(i, k)=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{k}\right)\right\rangle .
$$

## Define a kernel:

- Prove that a function $f(\cdot, \cdot)$ is positive definite. For example:

$$
f\left(x_{i}, x_{k}\right)=\left(1+\left\langle x_{i}, x_{k}\right\rangle\right)^{2} .
$$

- For each pair of samples, compute:

$$
K(i, k)=f\left(x_{i}, x_{k}\right) .
$$

## The kernel trick

## Expand predictor set:

- Find a mapping $\Phi$ which expands the original set of predictors $X_{1}, \ldots, X_{p}$. For example,

$$
\Phi(X)=\left(X_{1}, X_{2}, X_{1}^{2}\right)
$$

- For each pair of samples, compute:

$$
K(i, k)=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{k}\right)\right\rangle .
$$

## Define a kernel:

- Prove that a function $f(\cdot, \cdot)$ is positive definite. For example:

$$
f\left(x_{i}, x_{k}\right)=\left(1+\left\langle x_{i}, x_{k}\right\rangle\right)^{2} .
$$

- For each pair of samples, compute:

$$
K(i, k)=f\left(x_{i}, x_{k}\right) .
$$

Often much easier!

## The kernel trick

Example: The polynomial kernel with $d=2$ (and $p=2$ ).

$$
\begin{align*}
K\left(x, x^{\prime}\right)= & f\left(x, x^{\prime}\right)=\left(1+\left\langle x, x^{\prime}\right\rangle\right)^{2} \\
= & \left(1+x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2} \\
= & 1+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+\left(x_{1} x_{1}^{\prime}\right)^{2}+\left(x_{2} x_{2}^{\prime}\right)^{2}+2 x_{1} x_{1}^{\prime} x_{2} x_{2}^{\prime} \\
= & 1+\sqrt{2} x_{1} \sqrt{2} x_{1}^{\prime}+\sqrt{2} x_{2} \sqrt{2} x_{2}^{\prime}+x_{1}^{2}\left(x_{1}^{\prime}\right)^{2}+x_{2}^{2}\left(x_{2}^{\prime}\right)^{2} \\
& +\sqrt{2} x_{1} x_{2} \sqrt{2} x_{1}^{\prime} x_{2}^{\prime} \tag{21}
\end{align*}
$$

## The kernel trick

Example: The polynomial kernel with $d=2$ (and $p=2$ ).

$$
\begin{align*}
K\left(x, x^{\prime}\right)= & f\left(x, x^{\prime}\right)=\left(1+\left\langle x, x^{\prime}\right\rangle\right)^{2} \\
= & \left(1+x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2} \\
= & 1+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+\left(x_{1} x_{1}^{\prime}\right)^{2}+\left(x_{2} x_{2}^{\prime}\right)^{2}+2 x_{1} x_{1}^{\prime} x_{2} x_{2}^{\prime} \\
= & 1+\sqrt{2} x_{1} \sqrt{2} x_{1}^{\prime}+\sqrt{2} x_{2} \sqrt{2} x_{2}^{\prime}+x_{1}^{2}\left(x_{1}^{\prime}\right)^{2}+x_{2}^{2}\left(x_{2}^{\prime}\right)^{2} \\
& +\sqrt{2} x_{1} x_{2} \sqrt{2} x_{1}^{\prime} x_{2}^{\prime} \tag{21}
\end{align*}
$$

This is equivalent to the expansion:

$$
\Phi(X)=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)
$$

giving us

$$
\begin{equation*}
K(i, k)=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{k}\right)\right\rangle \tag{22}
\end{equation*}
$$

## The kernel trick

Example: The polynomial kernel with $d=2$ (and $p=2$ ).

$$
\begin{align*}
K\left(x, x^{\prime}\right)= & f\left(x, x^{\prime}\right)=\left(1+\left\langle x, x^{\prime}\right\rangle\right)^{2} \\
= & \left(1+x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2} \\
= & 1+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+\left(x_{1} x_{1}^{\prime}\right)^{2}+\left(x_{2} x_{2}^{\prime}\right)^{2}+2 x_{1} x_{1}^{\prime} x_{2} x_{2}^{\prime} \\
= & 1+\sqrt{2} x_{1} \sqrt{2} x_{1}^{\prime}+\sqrt{2} x_{2} \sqrt{2} x_{2}^{\prime}+x_{1}^{2}\left(x_{1}^{\prime}\right)^{2}+x_{2}^{2}\left(x_{2}^{\prime}\right)^{2} \\
& +\sqrt{2} x_{1} x_{2} \sqrt{2} x_{1}^{\prime} x_{2}^{\prime} \tag{21}
\end{align*}
$$

This is equivalent to the expansion:

$$
\Phi(X)=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)
$$

giving us

$$
\begin{equation*}
K(i, k)=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{k}\right)\right\rangle \tag{22}
\end{equation*}
$$

- Feature engineering is "automated" for us.
- Computing $K\left(x_{i}, x_{k}\right)$ directly is $O(p)$.

How do we define kernels to use?

- Derive a bilinear function $f(\cdot, \cdot)$.
- Prove that $f(\cdot, \cdot)$ is positive definite (PD).


## Defining kernels

How do we define kernels to use?

- Derive a bilinear function $f(\cdot, \cdot)$.
- Prove that $f(\cdot, \cdot)$ is positive definite (PD).

The common approach

- Combining PD kernels we are already familiar with.
- e.g. sums, products, etc.
- Functions of PD kernels are PD.


## Common kernels

- The polynomial kernel:

$$
K\left(x_{i}, x_{k}\right)=\left(1+\left\langle x_{i}, x_{k}\right\rangle\right)^{d}
$$

- The radial basis kernel:

$$
K\left(x_{i}, x_{k}\right)=\exp (-\gamma \underbrace{\gamma \sum_{j=1}^{p}\left(x_{i p}-x_{k p}\right)^{2}}_{\text {Euclidean } d\left(x_{i}, x_{k}\right)})
$$




## Kernel properties

- Kernels define similarity between two samples, $x_{i}$ and $x_{k}$.
- We can apply kernels even if we don't know what the transformations are.
- Kernels can result expansions that are an infinite number of transformations


## Kernel properties

- Kernels define similarity between two samples, $x_{i}$ and $x_{k}$.
- We can apply kernels even if we don't know what the transformations are.
- Kernels can result expansions that are an infinite number of transformations

Example: Assume $p=1$ and $\gamma>0$

$$
e^{-\gamma\left(x_{i}-x_{k}\right)^{2}}=e^{-\gamma x_{i}^{2}+2 \gamma x_{i} x_{k}-\gamma x_{k}^{2}}
$$

$$
=e^{-\gamma x_{i}^{2}-\gamma x_{k}^{2}}\left(1+\frac{2 \gamma x_{i} x_{k}}{1!}+\frac{\left(2 \gamma x_{i} x_{k}\right)^{2}}{2!}+\cdots\right)
$$

$$
=e^{-\gamma x_{i}^{2}-\gamma x_{k}^{2}}\left(1 \cdot 1+\sqrt{\frac{2 \gamma}{1!}} x_{i} \sqrt{\frac{2 \gamma}{1!}} x_{k}+\sqrt{\frac{(2 \gamma)^{2}}{2!}} x_{i}^{2} \sqrt{\frac{(2 \gamma)^{2}}{2!}} x_{k}^{2}+\cdots\right)
$$

$$
\begin{equation*}
=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{k}\right)\right\rangle \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
\text { where } \Phi(x)=e^{-\gamma x^{2}}\left[1, \sqrt{\frac{2 \gamma}{1!}} x, \sqrt{\frac{(2 \gamma)^{2}}{2!}} x^{2}, \cdots\right] \tag{23}
\end{equation*}
$$

## Multiclass approaches

SVM's don't generalize well to more than 2 class.
Two main approaches:

1. One vs one: Construct $\binom{k}{2}$ SVMs comparing every pair of classes. Apply all SVMs to a test observation and pick the class that wins the most one-on-one challenges.
2. One vs all: For each class $k$, construct an SVM $\beta^{k}$ coding class $k$ as 1 and all other classes as -1 . Assign a test observation to class $k^{*}$, such that the distance from $x_{i}$ to the hyperplace defined by $\beta^{k}$ is the largest.

## Relationship to logistic regression

In support vector classifiers: We can formulate

$$
\begin{equation*}
f(X)=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p} \tag{25}
\end{equation*}
$$

as a Loss + Penalty optimization:

$$
\begin{equation*}
\min _{\beta_{0}, \beta} \sum_{i=1}^{n} \max \left[0,1-y_{i} f\left(x_{i}\right)\right]+\lambda \sum_{j=1}^{p} \beta_{j}^{2} \tag{26}
\end{equation*}
$$

In logistic regression: we optimize

$$
\begin{equation*}
\min _{\beta_{0}, \beta} \sum_{i=1}^{n} \log \left[1+e^{-y_{i} f\left(x_{i}\right)}\right] \tag{27}
\end{equation*}
$$

## Comparing the losses



- When the classes are well separated, SVMs behave better
- When lots of overlap in classes, logistic regression preferred


## What about the kernels?

Many previous papers indicated that kernels are unique to SVMs.

- Can logistic regression also use kernels?


## What about the kernels?

Many previous papers indicated that kernels are unique to SVMs.

- Can logistic regression also use kernels?

Answer: Yes (using the Representer theorem)
Kernel logistic regression

$$
\begin{align*}
\hat{f}(x) & =\log \left[\frac{\hat{P}(Y=+1 \mid X)}{\hat{P}(Y=-1 \mid X)}\right]  \tag{28}\\
& =\hat{\beta}_{0}+\sum_{i=1}^{n} \hat{\alpha}_{i} K\left(x, x_{i}\right) \tag{29}
\end{align*}
$$

## What about probabilities?

Recall: logistic regression can provide probability estimates

- Can SVMs as well?


## What about probabilities?

Recall: logistic regression can provide probability estimates

- Can SVMs as well?

Answer: Yes (using logistic regression)

$$
\text { Let } g(x)=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}
$$

## Platt scaling

$$
\begin{equation*}
\mathbb{P}(y=1 \mid x)=\frac{1}{1+\exp (\operatorname{Ag}(x)+B)} \tag{30}
\end{equation*}
$$

n.b. Typically done via cross-validation.

This is called Platt scaling.

## References

[1] ISL. Chapter 9
[2] ESL. Chapter 12.1-12.3

