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Announcements

▶ Midterm is done being graded.

▶ Homework 2 grading is almost complete.

▶ Homework 3 is up.

▶ Due next Wednesday.

▶ Final projects due in 3 weeks.

▶ Final exam is on August 19 (7 PM - 10 PM)

▶ Please send Piazza messages for accommodation requests.

▶ Survey is still up (closing this Friday)
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Outline

Support Vector Machines

▶ Maximal margin classifier

▶ Support vector classifier

▶ Support vector machine
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Support Vector Machines

Support vector machines are (generally) classifiers

▶ Linear (like logistic regression)

▶ Non-probabilistic (unlike logistic regression)
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Hyperplanes and normal vectors

Consider a p-dimensional space of predictors

▶ A hyperplane is an affine space which separates the space into
two regions

▶ The normal vector β = (β1, . . . , βp), is a unit vector∑p
j=1 β

2
j = ∥β∥ = 1 which is orthogonal to the hyperplane

▶ The deviation between a point (x1, . . . , xp) and the
hyperplane is the dot product

▶ If the hyperplane goes through the origin

x · β = x1β1 + · · ·+ xpβp (1)

▶ If the hyperplane is displaced from the origin by −β0

β0 + x · β = β0 + x1β1 + · · ·+ xpβp (2)

▶ The sign of the dot product tells us on which side of the
hyperplane the point lies
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The maximal margin classifier

Suppose we have a classification problem with response Y = −1 or
Y = 1.

▶ If the classes can be separated (most likely) there will be an
infinite number of hyperplanes separating the classes

▶ Which one should we choose?
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The maximal margin classifier

Idea: Select the classifier with the maximal margin

▶ Draw the largest possible empty margin around the hyperplane

▶ Out of all possible hyperplanes that separate the 2 classes,
choose the one with the widest margin (in both directions)
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The maximal margin classifier

We can frame this as an optimization problem, i.e.

max
β0,β1,...,βp

M (3)

subject to

▶ ||β|| = 1

▶ yi (β0 + β1xi1 + · · ·+ βpxip)︸ ︷︷ ︸
How far xi is from the hyperplane

≥ M ∀ i = 1, . . . , n

where M is the width of the margin (in either direction)

n.b. the sign of β0 + β1xi1 + · · ·+ βpxip indicates the class

This is numerically hard to optimize
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Estimating the maximal margin classifier

We can reformulate the problem by normalizing for ∥β∥, i.e.

max
β0,β

M (4)

subject to

▶ 1
∥β∥yi (β0 + x⊤i β) ≥ M ∀ i = 1, . . . , n

or, equivalently,

▶ yi (β0 + x⊤i β) ≥ M∥β∥ ∀ i = 1, . . . , n
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Estimating the maximal margin classifier

Setting ||β|| = 1/M, we have

max
β0,β

1

∥β∥
= min

β0,β
∥β∥ = min

β0,β

1

2
∥β∥2 (5)

subject to

▶ yi (β0 + x⊤i β) ≥ 1 ∀ i = 1, . . . , n

This is a quadratic optimization problem (i.e. easier to solve)

▶ Typically solved using Lagrange duality
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Support vectors

The vectors (i.e. observations) that fall on the margin (and
determine the solution) are called support vectors:
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n.b. Only these points affect our estimation of the separating
hyperplane.
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The support vector classifier

Problem: It is not always possible (or desireable) to separate the
points using a hyperplane.

Support vector classifier:

▶ Relaxes the maximal margin classifier, using a soft margin

▶ Allows a number of points points to be on the wrong side of
the margin or hyperplane
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The support vector classifier

Building this into our optimization problem gives:

max
β0,β,ϵ

M (6)

subject to

▶ ∥β∥ = 1

▶ yi (β0 + x⊤i β) ≥ M(1− ϵi ) ∀ i = 1, . . . , n

▶ ϵi ≥ 0 ∀ i = 1, . . . , n and
∑n

i=1 ϵi ≤ C

where

▶ M is the width of the margin (in either direction)
▶ ϵ = (ϵ1, . . . , ϵn) are called slack variables
▶ C is called the budget
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Tuning the budget, C

−1 0 1 2

−
3

−
2

−
1

0
1

2
3

−1 0 1 2

−
3

−
2

−
1

0
1

2
3

−1 0 1 2

−
3

−
2

−
1

0
1

2
3

−1 0 1 2

−
3

−
2

−
1

0
1

2
3

X1X1

X1X1

X
2

X
2

X
2

X
2

Higher C means:

▶ More tolerance for errors

▶ Larger (estimated) margins
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Bias-variance trade off

C is typically chosen via cross-validation

▶ Larger C leads to classifers that have lower variance, but
potentially have higher bias

▶ Smaller C leads to classifiers that are highly fit to the data,
which may have low bias but high variance

▶ If C is too low we can overfit

▶ e.g. With the maximal margin classifier (C = 0), adding one
observation can dramatically change the classifier
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Estimating the support vector classifier

(Similar to before) we can reformulate the problem, i.e.

min
β0,β,ϵ

1

2
∥β∥2 + D

n∑
i=1

ϵi (7)

subject to

▶ yi (β0 + x⊤i β) ≥ (1− ϵi ) ∀ i = 1, . . . , n

▶ ϵi ≥ 0 ∀ i = 1, . . . , n

The penalty D ≥ 0 is inversely related to C , i.e.

▶ Smaller D means wider (estimated) margins

▶ Larger D means narrower (estimated) margins

This is (still) a quadratic optimization problem
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Lagrange duality

When dealing with optimization constraints

x

x2

b

min
x

x2 : x ≥ b (8)

can be re-written as a
(Lagrangian) loss function

L(x , α) = x2 − α(x − b) (9)

We then solve for it via

min
x

max
α

L(x , α) : α ≥ 0 (10)

Causes min to fight the max, i.e.

x < b ⇒ max
α

−α(x − b) = ∞

x > b ⇒ max
α

−α(x − b) = 0

x = b ⇒ L(x , α) = x2 − 0
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Estimating the support vector classifier

Similar to the Maximal Margin Classifier:

▶ We can apply a Lagrange multipliers for our (constrained)
optimization problem.

▶ e.g. Karush-Kuhn-Tucker multipliers.

▶ This reduces our problem to finding α1, . . . , αn such that:

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
i ′=1

αiαi ′yiyi ′ (xi · xi ′)︸ ︷︷ ︸
inner product

(11)

subject to

▶ 0 ≤ αi ≤ D ∀ i = 1, . . . , n

▶
∑

i αiyi = 0

This only depends on the training sample inputs through the inner
products (xi · xj) for every pair of points i , j
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Kernel matrix

A key property of support vector classifiers:

▶ To find the hyperplane and make predictions all we need is the
dot product between any pair of input vectors:

K (i , k) = (xi · xk) = ⟨xi , xk⟩ =
p∑

j=1

xijxkj (12)

▶ We call this the kernel matrix.
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Non-linear boundaries

The support vector classifier can only produce a linear
boundary.

Example:
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Non-linear boundaries

Recall: In logistic regression, we dealt with this problem by adding
transformations of the predictors, e.g.

▶ For a linear boundary:

log

[
P(Y = +1|X )

P(Y = −1|X )

]
= β0 + β1X1 + β2X2︸ ︷︷ ︸

set equal to 0 and solve for X1,X2

(13)

▶ For a quadratic boundary:

log

[
P(Y = +1|X )

P(Y = −1|X )

]
= β0 + β1X1 + β2X2 + β3X

2
1︸ ︷︷ ︸

set equal to 0 and solve for X1,X2

(14)
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Non-linear boundaries

For support vector classifiers: We can do the same thing, e.g.

▶ For a linear hyperplane:

β0 + β1X1 + β2X2 = 0︸ ︷︷ ︸
estimate β’s directly

(15)

▶ Projecting onto a 3D space (X1,X2,X
2
1 ):

β0 + β1X1 + β2X2 + β3X
2
1 = 0︸ ︷︷ ︸

estimate β’s directly

(16)

▶ Still a linear boundary, but now in 3D space

▶ Boundary is now quadratic in X1
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Non-linear boundaries

Example projection:

Left: Sample space under (X1,X2)
Right: Sample space under (X1,X2,X

2
1 · X 2

2 )
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Non-linear boundaries

One approach:

▶ Add polynomial terms up to degree d , i.e.

Z = (X1,X
2
1 , . . . ,X

d
1 ,X2,X

2
2 , . . . ,X

d
2 , . . . ,Xp,X

2
p , . . . ,X

d
p )(17)

▶ Fit a support vector classifier on the expanded set of predictors

Question: Does this make the computation more expensive?

▶ Recall that all we need to compute is the dot product:

xi · xk = ⟨xi , xk⟩ =
p∑

j=1

xijxkj (18)

▶ With the expanded set of predictors, we need:

zi · zk = ⟨zi , zk⟩ =
p∑

j=1

d∑
ℓ=1

xℓijx
ℓ
kj (19)
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Kernels

Rather than expanding our predictors, we could instead use kernels
K (i , k):

▶ Always positive semi-definite, i.e. it is symmetric and has no
negative eigenvalues

▶ Quantifies the similarity of two observations

Example:
Our support vector classifier is equivalent to using the (linear)
kernel

K (xi , x
′
i ) =

p∑
j=1

xijxi ′j (20)
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The kernel trick

Expand predictor set:
▶ Find a mapping Φ which

expands the original set of
predictors X1, . . . ,Xp. For
example,

Φ(X ) = (X1,X2,X
2
1 )

▶ For each pair of samples,
compute:

K (i , k) = ⟨Φ(xi ),Φ(xk)⟩.

Define a kernel:
▶ Prove that a function f (·, ·)

is positive definite. For
example:

f (xi , xk) = (1 + ⟨xi , xk⟩)2 .

▶ For each pair of samples,
compute:

K (i , k) = f (xi , xk).

Often much easier!
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The kernel trick

Example: The polynomial kernel with d = 2 (and p = 2).
K (x , x ′) = f (x , x ′) =

(
1 + ⟨x , x ′⟩

)2
= (1 + x1x

′
1 + x2x

′
2)

2

= 1 + 2x1x
′
1 + 2x2x

′
2 + (x1x

′
1)

2 + (x2x
′
2)

2 + 2x1x
′
1x2x

′
2

= 1 +
√
2x1

√
2x ′1 +

√
2x2

√
2x ′2 + x21 (x

′
1)

2 + x22 (x
′
2)

2

+
√
2x1x2

√
2x ′1x

′
2

(21)

This is equivalent to the expansion:

Φ(X ) =(1,
√
2x1,

√
2x2, x

2
1 , x

2
2 ,
√
2x1x2)

giving us
K (i , k) = ⟨Φ(xi ),Φ(xk)⟩ (22)

▶ Feature engineering is “automated” for us.

▶ Computing K (xi , xk) directly is O(p).

▶ Computing the kernel using the expansion is O(p2).
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Defining kernels

How do we define kernels to use?

▶ Derive a bilinear function f (·, ·).

▶ Prove that f (·, ·) is positive definite (PD).

The common approach

▶ Combining PD kernels we are already familiar with.

▶ e.g. sums, products, etc.

▶ Functions of PD kernels are PD.
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Common kernels

▶ The polynomial kernel:

K (xi , xk) = (1 + ⟨xi , xk⟩)d

▶ The radial basis kernel:

K (xi , xk) = exp
(
− γ

p∑
j=1

(xip − xkp)
2

︸ ︷︷ ︸
Euclidean d(xi , xk )

)
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Kernel properties

▶ Kernels define similarity between two samples, xi and xk .
▶ We can apply kernels even if we don’t know what the

transformations are.
▶ Kernels can result expansions that are an infinite number of

transformations

Example: Assume p = 1 and γ > 0

e−γ(xi−xk )
2
= e−γx2i +2γxixk−γx2k

= e−γx2i −γx2k

(
1 +

2γxixk
1!

+
(2γxixk)

2

2!
+ · · ·

)
= e−γx2i −γx2k

(
1 · 1 +

√
2γ

1!
xi

√
2γ

1!
xk +

√
(2γ)2

2!
x2i

√
(2γ)2

2!
x2k + · · ·

)
= ⟨Φ(xi ),Φ(xk)⟩

(23)

where Φ(x) = e−γx2

[
1,

√
2γ

1!
x ,

√
(2γ)2

2!
x2, · · ·

]
(24)
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Multiclass approaches

SVM’s don’t generalize well to more than 2 class.

Two main approaches:

1. One vs one: Construct
(k
2

)
SVMs comparing every pair of

classes. Apply all SVMs to a test observation and pick the
class that wins the most one-on-one challenges.

2. One vs all: For each class k , construct an SVM βk coding
class k as 1 and all other classes as −1. Assign a test
observation to class k∗, such that the distance from xi to the
hyperplace defined by βk is the largest.
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Relationship to logistic regression

In support vector classifiers: We can formulate

f (X ) = β0 + β1X1 + · · ·+ βpXp (25)

as a Loss + Penalty optimization:

min
β0,β

n∑
i=1

max[0, 1− yi f (xi )] + λ

p∑
j=1

β2
j (26)

In logistic regression: we optimize

min
β0,β

n∑
i=1

log[1 + e−yi f (xi )] (27)
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Comparing the losses
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SVM Loss

Logistic Regression Loss

yi(β0 + β1xi1 + . . . + βpxip)

▶ When the classes are well separated, SVMs behave better

▶ When lots of overlap in classes, logistic regression preferred

STATS 202: Data Mining and Analysis L. Tran 33/36



What about the kernels?

Many previous papers indicated that kernels are unique to SVMs.

▶ Can logistic regression also use kernels?

Answer: Yes (using the Representer theorem)

Kernel logistic regression

f̂ (x) = log

[
P̂(Y = +1|X )

P̂(Y = −1|X )

]
(28)

= β̂0 +
n∑

i=1

α̂iK (x , xi ) (29)
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What about probabilities?

Recall: logistic regression can provide probability estimates

▶ Can SVMs as well?

Answer: Yes (using logistic regression)

Let g(x) = β0 + β1xi1 + · · ·+ βpxip

Platt scaling

P(y = 1|x) = 1

1 + exp(Ag(x) + B)
(30)

n.b. Typically done via cross-validation.

This is called Platt scaling.
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