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Announcements

▶ HW1 is graded.

▶ Regrade requests are allowed up to 1 week from publication

▶ HW2 is due today

▶ Midterm is this Wednesday

▶ In-person

▶ Accommodations should be confirmed

▶ No calculators necessary

▶ Annonymous course survey will be posted on Wednesday

▶ Closes Tuesday afternoon

▶ Up to 10 additional bonus points on exam (conditional on %
participation)

▶ No section this Friday
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▶ Subset selection

▶ Shrinkage methods

▶ Ridge

▶ LASSO

▶ Elastic net
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What we know so far

▶ In linear regression, adding predictors always decreases the
training error or RSS.

RSS = (Y − Xβ)⊤(Y − Xβ) (1)

▶ We can estimate β by minimizing the RSS.

β̂ = (X⊤X)−1X⊤y (2)

▶ However, adding predictors does not necessarily improve the
test error.

▶ Selecting significant predictors is hard when n is not much
larger than p.
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Singular matrices

▶ When our matrix is not of full column rank (e.g. n < p), we
have that (X⊤X)−1 is not invertible.

▶ Consequently, there is no least squares solution:

β̂ = (X⊤X)︸ ︷︷ ︸
Singular

−1X⊤y (3)

▶ So, we must find a way around this.
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Accounting for singularity

β̂ = (X⊤X)︸ ︷︷ ︸
Singular

−1X⊤y (4)

Three common approaches for dealing with this:

1. Subset selection

▶ Select a subset k of the p predictors (k ⩽ p).
▶ Use criteria to help select which subset k we want.

2. Shrinkage methods

▶ Constrain the parameters we’re estimating in some way

3. Dimension reduction

▶ Project all our predictors to a smaller dimension space
▶ Not covered in this class
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Subset selection

▶ Simple idea: Compare all models with k predictors

▶ Note: There are
(p
k

)
= p!/(k!(p − k)!) possible models

▶ Choose the model with the smallest RSS

▶ Doing this for every possible k :

2 4 6 8 10

2
e
+

0
7

4
e
+

0
7

6
e
+

0
7

8
e
+

0
7

Number of Predictors

R
e

s
id

u
a

l 
S

u
m

 o
f 

S
q

u
a

re
s

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of Predictors

R
2

Note: As expected, the RSS and R2 improve with higher k .
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The optimal k

Two approaches:

1. Use a hold out set (e.g. validation or test set)

▶ c.f. Cross-validation

2. Use modified metrics that account for the size of k , e.g.

▶ Akaike Information Criterion (AIC)

▶ Bayesian Information Criterion (BIC)

▶ Adjusted R2

How the modified metrics compare to using hold out sets

▶ Can be (much) less expensive to compute

▶ Motivated by asymptotic arguments and rely on model
assumptions (e.g. normality of the errors)

▶ Equivalent concepts for other models (e.g. logistic regression)

STATS 202: Data Mining and Analysis L. Tran 8/41



The optimal k

Two approaches:

1. Use a hold out set (e.g. validation or test set)

▶ c.f. Cross-validation

2. Use modified metrics that account for the size of k , e.g.

▶ Akaike Information Criterion (AIC)

▶ Bayesian Information Criterion (BIC)

▶ Adjusted R2

How the modified metrics compare to using hold out sets

▶ Can be (much) less expensive to compute

▶ Motivated by asymptotic arguments and rely on model
assumptions (e.g. normality of the errors)

▶ Equivalent concepts for other models (e.g. logistic regression)

STATS 202: Data Mining and Analysis L. Tran 8/41



Akaike Information Criterion (AIC)

Similar to Mallow’s Cp:

Cp =
1

n
(RSS + 2kσ̂2) (5)

▶ i.e. Adds the penalty 2kσ̂2 to the RSS

▶ Can be shown to be unbiased estimate of test set error

But, also normalizes for σ̂2:

AIC =
1

nσ̂2
(RSS + 2kσ̂2) =

Cp

σ̂2
(6)

Since the two are proportional, (for least squares models) both are
optimized at the same k .
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Bayesian Information Criterion (BIC)

Similar to Mallow’s Cp, but derived from Bayesian POV:

BIC =
1

n
(RSS + log(n)kσ̂2) (7)

n.b. log(n) > 2 for n > 7

▶ BIC will penalize more for large k (i.e. optimizes for smaller k)
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Adjusted R2

Recall:

R2 = 1− RSS

TSS
(8)

The adjusted R2 penalizes for larger k :

R2
adj = 1− RSS/(n − d − 1)

TSS/(n − 1)
(9)

Maximizing R2
adj is equivalent to minimizing 1− R2

adj , i.e.:

RSS

n − d − 1
(10)
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Applied example

Best subset selection for the Credit data set
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n.b. The curve is pretty flat for k ≥ 4

STATS 202: Data Mining and Analysis L. Tran 12/41



Applied example

Best subset selection for the Credit data set

2 4 6 8 10

1
0

0
0

0
1

5
0

0
0

2
0

0
0

0
2

5
0

0
0

3
0

0
0

0

Number of Predictors

C
p

2 4 6 8 10

1
0

0
0

0
1

5
0

0
0

2
0

0
0

0
2

5
0

0
0

3
0

0
0

0

Number of Predictors

B
IC

2 4 6 8 10

0
.8

6
0

.8
8

0
.9

0
0

.9
2

0
.9

4
0

.9
6

Number of Predictors

A
d
ju

s
te

d
 R

2
 

n.b. The curve is pretty flat for k ≥ 4

STATS 202: Data Mining and Analysis L. Tran 12/41



Applied example

BIC vs validation sets
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n.b. The curves are also pretty flat for k ≥ 4.

Can use the one-standard-error rule

▶ Choose the parsimonious model (i.e. lowest k) such that the
test error is within 1-SE of the lowest point
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Stepwise selection methods

Best subset selection has 2 problems:

1. It is often very expensive computationally. We have to fit 2p

different models!

2. If for a fixed k , there are too many possibilities, we increase
our chances of overfitting

▶ i.e. the model selected has high variance.

One solution: Restrict our search space for the best model

▶ This reduces the variance of the selected model at the
expense of an increase in bias.
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Forward stepwise selection
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Forward selection vs best subset
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Backward stepwise selection
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Forward vs backward selection

▶ You cannot apply backward selection when p > n

▶ Though should still have a “reasonable” number of
observations

▶ Important: they may not produce the same sequence of
models.
Example: X1,X2

iid∼ N (0, σ2)

X3 = X1 + 3X2 (11)

Y = X1 + 2X2 + ϵ (12)

Regressing Y onto X1,X2,X3:

▶ Forward: {X3} → {X3,X2} → {X3,X2,X1}
▶ Backward: {X1,X2,X3} → {X1,X2} → {X2}
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Other stepwise selection methods

▶ Mixed stepwise selection: Do forward selection, but at every
step, remove any variables that are no longer “necessary”

▶ e.g. using p-values

▶ Forward stagewise selection: Do forward selection, but after
every step, modify the remaining predictors such that they are
uncorrelated to the selected predictors.

▶ etc.
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Issues with stepwise methods

Important things to keep in mind:

▶ The selected model is not guaranteed to be optimal

▶ There are often several equally good models

▶ The procedure does not take into account a researcher’s
knowledge about the predictors

▶ Outliers can have a large impact on the procedure

▶ Some predictors should be considered together as a group
(e.g. dummy indicators for seasons of the year)

▶ The coefficients, R2, p-values, CI’s, etc are all biased/invalid

▶ Should not over-interpret the order that the predictors are
included

▶ Cannot conclude that all variables included are important, or
all excluded variables are unimportant

See Frank Harrell’s comments.
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Shrinkage methods

Allows us to use all p predictors, but will regularize (i.e. shrink)
their coefficients in some way.

▶ Common to shrink them towards 0

Question: Why would shrunk coefficients be better?

▶ Will introduce bias, but can significantly reduce the variance

▶ If the variance is noticeably larger, this decreases the test error

▶ There are Bayesian motivations to do this: the prior tends to
shrink the parameters.

Three common shrinkage methods:

1. Ridge regression

2. Lasso regression

3. Elastic net

STATS 202: Data Mining and Analysis L. Tran 21/41



Shrinkage methods

Allows us to use all p predictors, but will regularize (i.e. shrink)
their coefficients in some way.

▶ Common to shrink them towards 0

Question: Why would shrunk coefficients be better?

▶ Will introduce bias, but can significantly reduce the variance

▶ If the variance is noticeably larger, this decreases the test error

▶ There are Bayesian motivations to do this: the prior tends to
shrink the parameters.

Three common shrinkage methods:

1. Ridge regression

2. Lasso regression

3. Elastic net

STATS 202: Data Mining and Analysis L. Tran 21/41



Shrinkage methods

Allows us to use all p predictors, but will regularize (i.e. shrink)
their coefficients in some way.

▶ Common to shrink them towards 0

Question: Why would shrunk coefficients be better?

▶ Will introduce bias, but can significantly reduce the variance

▶ If the variance is noticeably larger, this decreases the test error

▶ There are Bayesian motivations to do this: the prior tends to
shrink the parameters.

Three common shrinkage methods:

1. Ridge regression

2. Lasso regression

3. Elastic net

STATS 202: Data Mining and Analysis L. Tran 21/41



Ridge regression

Ridge regression solves the following optimization:

min
β

n∑
i=1

yi − β0 −
p∑

j=1

βjxi ,j

2

+ λ

p∑
j=1

β2
j (13)

In blue: the model RSS
In red: the squared ℓ2 norm of β, or ∥β∥22
The parameter λ > 0 is a tuning parameter. It modulates the
importance of fit vs. shrinkage.

▶ Typically determined via e.g. cross-validation
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Ridge regression

Writing our loss function in matrix form

(Y − Xβ)⊤(Y − Xβ) + λβ⊤β (14)

it can be shown that

β̂ridge
n = (X⊤X+ λIn)

−1X⊤Y (15)

▶ So ridge regression simply adds a positive constant to X⊤X,
making it non-singular.
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Ridge regression

Under the linear model, the mean and covariance of β̂ridge
n

are:
E[β̂ridge

n |X] = (X⊤X+ λIn)
−1X⊤E[Y|X]

= (X⊤X+ λIn)
−1X⊤Xβ

(16)

Cov [β̂ridge
n |X] = (X⊤X+ λIn)

−1X⊤Cov[Y|X]
X⊤(X⊤X+ λIn)

−1

= σ2(X⊤X+ λIn)
−1X⊤X(X⊤X+ λIn)

−1

(17)
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Scaling predictors

In least-squares regression, scaling the variables has no effect on
the fit of the model:

Y = X0 + β1X1 + β2X2 + · · ·+ βpXp (18)

e.g. Multiplying X1 by c can be compensated by dividing β̂1 by c

▶ i.e. Doing this results in the same RSS

This is not true for ridge regression!

▶ Due to ∥β∥22
▶ In practice: standardize all predictors (i.e. center and scale

such that it has sample variance 1)

▶ e.g. glmnet (by Hastie, Tibshirani, and Friedman)
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Example: Ridge regression

Ridge regression of default in the Credit dataset.
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Bias variance trade-off

Computing the bias, variance, and test error as a function of λ (in
simulation).
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Cross validation would yield an estimate of the test error.
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Selecting λ by cross-validation
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The Lasso

The Least Absolute Shrinkage and Selection Operator regression
solves the following optimization:

min
β

n∑
i=1

yi − β0 −
p∑

j=1

βjxi ,j

2

+ λ

p∑
j=1

|βj | (19)

In blue: the model RSS
In red: the ℓ1 norm of β, or ∥β∥1

Note: Unlike ridge regression,
LASSO does not have a closed form solution.

Why would we use the Lasso instead of Ridge regression?

▶ Ridge regression shrinks all the coefficients to a non-zero value

▶ The Lasso shrinks some of the coefficients all the way to zero.

▶ Similar to subset selection: will select variables for you
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Ridge regression of default in the Credit dataset.
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Lasso regression of default in the Credit dataset.
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An alternative formulation for regularization

▶ Ridge: for every λ, there is an s such that β̂R
λ solves:

min
β


n∑

i=1

yi − β0 −
p∑

j=1

βjxi ,j

2 subject to

p∑
j=1

β2
j < s (20)

▶ Lasso: for every λ, there is an s such that β̂L
λ solves:

min
β


n∑

i=1

yi − β0 −
p∑

j=1

βjxi ,j

2 subject to

p∑
j=1

|βj | < s (21)
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An alternative formulation for regularization
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When is the Lasso better than Ridge?

Example 1. Most of the coefficients are non-zero.
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▶ Bias, Variance, MSE. The Lasso (—), Ridge (· · · ).
▶ The bias is about the same for both methods.

▶ The variance of Ridge regression is smaller, so is the MSE.
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When is the Lasso better than Ridge?

Example 2. Only 2 coefficients are non-zero.
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▶ Bias, Variance, MSE. The Lasso (—), Ridge (· · · ).
▶ The bias, variance, and MSE are lower for the Lasso.
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Elastic Net

Combines ∥β∥22 (ridge) and ∥β∥1 (lasso) penalties.

Elastic net solves the following optimization:

min
β

n∑
i=1

yi − β0 −
p∑

j=1

βjxi ,j

2

+ λ2

p∑
j=1

β2
j + λ1

p∑
j=1

|βj | (22)

In blue: the model RSS
In red: both ∥β∥22 and ∥β∥1
This provides a nice trade off between sparsity and grouping.

Typically, we define α = λ2
λ2+λ1

and instead optimize:

min
β

n∑
i=1

yi − β0 −
p∑

j=1

βjxi ,j

2

+ α

p∑
j=1

β2
j + (1− α)

p∑
j=1

|βj |(23)
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An alternative formulation for regularization

Elastic net:

min
β


n∑

i=1

yi − β0 −
p∑

j=1

βjxi ,j

2 s.t. α∥β∥22 + (1− α)∥β∥1 < s (24)

▶ Singularities at the vertexes (to
encourage sparsity)

▶ Strict convex edges (to encourage
grouping)
▶ The strength of convexity varies

with α
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Example: Elastic net
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Shrinkage summaries

min
β

n∑
i=1

yi − β0 −
p∑

j=1

βjxi ,j

2

+ λ2

p∑
j=1

β2
j + λ1

p∑
j=1

|βj | (25)

Method Shrinkage parameters
OLS λ1 = λ2 = 0
Ridge λ1 = 0, λ2 > 0
LASSO λ1 > 0, λ2 = 0

Elastic net λ1 > 0, λ2 > 0

β̂n = 0 λ1 = ∞ or λ2 = ∞
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Things to consider

▶ If desired, we could instead consider Lq penalties for values
other than 0, 1, and 2 (e.g. q ∈ (1, 2) or q > 2).

▶ Regularization methods such as the elastic net have been
extended to generalized linear models (GLM) as well.

▶ L1 and L2 penalties are also used in contexts other than linear
models (e.g. neural networks).

▶ As usual, we are faced with the bias-variance tradeoff when
choosing our shrinkage parameters, λ1 and λ2.

▶ Other regularized methods are also available, e.g.

▶ Non-negative Garotte Regression

▶ Least Angle Regression

▶ Best subset
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Degrees of freedom

Degrees of freedom give us a measure of our model’s complexity,
i.e. the number of free parameters to fit on our data.

▶ For OLS, the degrees of freedom is equal to p + 1.

▶ In regularized regression, our parameters are estimated in a
restricted manner, controlled by λ1 and λ2.

▶ Effectively reduced the degrees of freedom in our model

▶ We can still compare across models using an effective degrees
of freedom:

df (y , ŷ) =
1

σ2

n∑
i=1

Cov [yi , ŷi |xi ] (26)

▶ In the case of OLS, this can be shown to reduce to the
’‘standard” degrees of freedom, i.e. p + 1.
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