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Announcements

> HW1 is graded.
» Regrade requests are allowed up to 1 week from publication
> HW?2 is due today
> Midterm is this Wednesday
» In-person
» Accommodations should be confirmed
» No calculators necessary
» Annonymous course survey will be posted on Wednesday
» Closes Tuesday afternoon

» Up to 10 additional bonus points on exam (conditional on %
participation)

» No section this Friday
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» Subset selection

» Shrinkage methods
» Ridge
> LASSO

» Elastic net
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What we know so far

P In linear regression, adding predictors always decreases the
training error or RSS.

RSS = (Y — XB) ' (Y — XB) (1)
» We can estimate § by minimizing the RSS.
B=(X"X)"xTy (2)

» However, adding predictors does not necessarily improve the
test error.

» Selecting significant predictors is hard when n is not much
larger than p.
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Singular matrices

» When our matrix is not of full column rank (e.g. n < p), we
have that (XTX)™! is not invertible.

» Consequently, there is no least squares solution:

B=X'X) "Xy (3)
Singular

» So, we must find a way around this.
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Accounting for singularity

B=(XTX)"'XTy (4)
——
Singular
Three common approaches for dealing with this:
1. Subset selection

> Select a subset k of the p predictors (k < p).
» Use criteria to help select which subset k we want.
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Accounting for singularity

B=(XTX)"'XTy (4)
——
Singular
Three common approaches for dealing with this:
1. Subset selection

> Select a subset k of the p predictors (k < p).
» Use criteria to help select which subset k we want.

2. Shrinkage methods
» Constrain the parameters we're estimating in some way
3. Dimension reduction

» Project all our predictors to a smaller dimension space
» Not covered in this class
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Subset selection

» Simple idea: Compare all models with k predictors
> Note: There are (£) = p!/(k!(p — k)!) possible models
» Choose the model with the smallest RSS

» Doing this for every possible k:
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Note: As expected, the RSS and R? improve with higher k.
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The optimal k

Two approaches:
1. Use a hold out set (e.g. validation or test set)
» c.f. Cross-validation
2. Use modified metrics that account for the size of k, e.g.
» Akaike Information Criterion (AIC)

» Bayesian Information Criterion (BIC)

> Adjusted R?
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The optimal k

Two approaches:
1. Use a hold out set (e.g. validation or test set)
» c.f. Cross-validation
2. Use modified metrics that account for the size of k, e.g.
» Akaike Information Criterion (AIC)
» Bayesian Information Criterion (BIC)
> Adjusted R?
How the modified metrics compare to using hold out sets
» Can be (much) less expensive to compute

> Motivated by asymptotic arguments and rely on model
assumptions (e.g. normality of the errors)

» Equivalent concepts for other models (e.g. logistic regression)
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Akaike Information Criterion (AIC)

Similar to Mallow's Cj:

C, = %(RSS + 2k6?) (5)

» i.e. Adds the penalty 2k52 to the RSS
» Can be shown to be unbiased estimate of test set error

But, also normalizes for 52:

(@)

AIC = (RSS +2k6%) = 2 (6)

Q>

Since the two are proportional, (for least squares models) both are
optimized at the same k.
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Bayesian Information Criterion (BIC)

Similar to Mallow's C,, but derived from Bayesian POV:

BIC = %(RSS + log(n)k&?) (7)
n.b. log(n) > 2 for n > 7

» BIC will penalize more for large k (i.e. optimizes for smaller k)
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Adjusted R?

Recall:

RSS

The adjusted R? penalizes for larger k:

RSS/(n—d —1)
~ TSS/(n—1) )
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Adjusted R?

Recall:

RSS

RZ=1- —
TSS

The adjusted R? penalizes for larger k:

5 RSS/(n—d —1)
Rad' =1-
J TSS/(n—1)
Maximizing Rgdj is equivalent to minimizing 1 — dej' i.e.
RSS
n—d-1
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Applied example

Best subset selection for the Credit data set

25000 30000
I I
25000 30000
I I

C
20000
1
BIC
20000
1
Adjusted R

15000
I
15000
I
086 0.88 090 092 094 0.96

10000
I

10000
I

R G |
T T T T T T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Number of Predictors Number of Predictors Number of Predictors

STATS 202: Data Mining and Analysis L. Tran 12/41



Applied example

Best subset selection for the Credit data set
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n.b. The curve is pretty flat for k > 4
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Applied example

BIC vs validation sets
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n.b. The curves are also pretty flat for kK > 4.
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Applied example

BIC vs validation sets
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n.b. The curves are also pretty flat for kK > 4.
Can use the one-standard-error rule

» Choose the parsimonious model (i.e. lowest k) such that the
test error is within 1-SE of the lowest point
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Stepwise selection methods

Best subset selection has 2 problems:

1. It is often very expensive computationally. We have to fit 2P
different models!

2. If for a fixed k, there are too many possibilities, we increase
our chances of overfitting

» i.e. the model selected has high variance.
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Stepwise selection methods

Best subset selection has 2 problems:

1. It is often very expensive computationally. We have to fit 2P
different models!

2. If for a fixed k, there are too many possibilities, we increase
our chances of overfitting

» i.e. the model selected has high variance.
One solution: Restrict our search space for the best model

» This reduces the variance of the selected model at the
expense of an increase in bias.
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Forward stepwise selection

Algorithm 6.2 Forward stepwise selection

1. Let Mo denote the null model, which contains no predictors.

2. For k=0,...,p—1:
(a) Consider all p — k models that augment the predictors in My,
with one additional predictor.
(b) Choose the best among these p — k models, and call it Mp41.
Here best is defined as having smallest RSS or highest R2.

3. Select a single best model from among Moy,..., M, using cross-
validated prediction error, C, (AIC), BIC, or adjusted R2.
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Forward selection vs best subset

# Variables

Best subset

Forward stepwise

One
Two
Three
Four

rating

rating, income

rating, income, student
cards, income

student, limit

rating

rating, income

rating, income, student
rating, income,
student, limit

TABLE 6.1. The first four selected models for best subset selection and forward
stepwise selection on the Credit data set. The first three models are identical but
the fourth models differ.
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Backward stepwise selection

Algorithm 6.3 Backward stepwise selection

1. Let M,, denote the full model, which contains all p predictors.
2. Fork=p,p—1,...,1:

(a) Consider all £ models that contain all but one of the predictors
in My, for a total of k£ — 1 predictors.

(b) Choose the best among these k models, and call it My_;. Here
best is defined as having smallest RSS or highest R2.

3. Select a single best model from among My,..., M, using cross-
validated prediction error, C, (AIC), BIC, or adjusted R2.
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Forward vs backward selection

» You cannot apply backward selection when p > n

» Though should still have a “reasonable” number of
observations

» Important: they may not produce the same sequence of
models. )
Example: Xi, X2 " N(0,02)
X3 = Xi+3X (11)
Y = Xi14+2Xo+¢€ (12)
Regressing Y onto Xi, Xo, X3:
» Forward: {Xg} — {X3,X2} — {X3,X2,X1}
» Backward: {Xl,XQ,X::,} — {X17X2} — {XQ}
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Other stepwise selection methods

» Mixed stepwise selection: Do forward selection, but at every
step, remove any variables that are no longer “necessary”

» e.g. using p-values

» fForward stagewise selection: Do forward selection, but after
every step, modify the remaining predictors such that they are
uncorrelated to the selected predictors.

> etc.
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Issues with stepwise methods %

Important things to keep in mind:
» The selected model is not guaranteed to be optimal
» There are often several equally good models

» The procedure does not take into account a researcher's
knowledge about the predictors

» Outliers can have a large impact on the procedure

» Some predictors should be considered together as a group
(e.g. dummy indicators for seasons of the year)

» The coefficients, R?, p-values, Cl's, etc are all biased/invalid

» Should not over-interpret the order that the predictors are
included

» Cannot conclude that all variables included are important, or

all excluded variables are unimportant
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Shrinkage methods

Allows us to use all p predictors, but will regularize (i.e. shrink)
their coefficients in some way.

» Common to shrink them towards 0
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Shrinkage methods
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Question: Why would shrunk coefficients be better?
» Will introduce bias, but can significantly reduce the variance

» If the variance is noticeably larger, this decreases the test error

» There are Bayesian motivations to do this: the prior tends to
shrink the parameters.
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Shrinkage methods

Allows us to use all p predictors, but will regularize (i.e. shrink)
their coefficients in some way.

» Common to shrink them towards 0
Question: Why would shrunk coefficients be better?
» Will introduce bias, but can significantly reduce the variance

» If the variance is noticeably larger, this decreases the test error

» There are Bayesian motivations to do this: the prior tends to
shrink the parameters.

Three common shrinkage methods:
1. Ridge regression
2. Lasso regression

3. Elastic net
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Ridge regression

Ridge regression solves the following optimization:
2
n P
min > | vi— o= Bxig | +A_ 5 (13)
i=1 j=1 j=1
In blue: the model RSS

In red: the squared ¢ norm of 3, or ||33

The parameter A > 0 is a tuning parameter. It modulates the
importance of fit vs. shrinkage.

» Typically determined via e.g. cross-validation
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Ridge regression

Writing our loss function in matrix form
(Y = XB)" (Y = XB) + 28" (14)
it can be shown that

Bridee — (XTX + Al,) " IXTY (15)

» So ridge regression simply adds a positive constant to X' X,
making it non-singular.
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Ridge regression

. . ~ rid
Under the linear model, the mean and covariance of 3, “€°

are: ,
E[37%¢|X] = (XTX + M) ' X TE[Y[X]

16
= (XX + M) IXTX8 (16)
Cov[Bree|X] = (XX + Aln) X" Cov[Y|X]

XT(XTX 4+ Aly) ™! (17)
= o2 (XTX + M) IXTX(XTX + Al

STATS 202: Data Mining and Analysis L. Tran 24/41



Scaling predictors

In least-squares regression, scaling the variables has no effect on
the fit of the model:

Y =Xo+ 81Xy + B2 Xo+ -+ BpXp (18)

e.g. Multiplying X by ¢ can be compensated by dividing /;’1 by ¢

» i.e. Doing this results in the same RSS
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Scaling predictors

In least-squares regression, scaling the variables has no effect on
the fit of the model:

Y =Xo+ 81Xy + B2 Xo+ -+ BpXp (18)

e.g. Multiplying X by ¢ can be compensated by dividing /;’1 by ¢
» i.e. Doing this results in the same RSS
This is not true for ridge regression!

> Due to ||5]|3

» In practice: standardize all predictors (i.e. center and scale
such that it has sample variance 1)

» e.g. glmnet (by Hastie, Tibshirani, and Friedman)
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Example: Ridge regression

Ridge regression of default in the Credit dataset.
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Bias variance trade-off

Computing the bias, variance, and test error as a function of A (in
simulation).
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Cross validation would yield an estimate of the test error.
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Selecting A by cross-validation
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The Lasso

The Least Absolute Shrinkage and Selection Operator regression
solves the following optimization:

n

2
P p

mﬁin Z yi—Bo — Zﬂjxi,j + )\Z 18j] (19)
Jj=1

i=1 j=1

In blue: the model RSS
In red: the ¢; norm of 3, or || 5|1
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The Lasso

The Least Absolute Shrinkage and Selection Operator regression
solves the following optimization:

n

2
P p
mﬁin Z yi—Bo — Zﬁjxi,j + )\Z e (19)
Jj=1

i=1 j=1

In blue: the model RSS

In red: the /1 norm of 3, or ||3||; Note: Unlike ridge regression,
LASSO does not have a closed form solution.

Why would we use the Lasso instead of Ridge regression?

» Ridge regression shrinks all the coefficients to a non-zero value
» The Lasso shrinks some of the coefficients all the way to zero.

» Similar to subset selection: will select variables for you
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Ridge regression of default in the Credit dataset.
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Lasso regression of default in the Credit dataset.
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An alternative formulation for regularization

> Ridge: for every A, there is an s such that ﬁAf solves:

2
n

P p
mﬁin Z yi — Bo — Zﬁjx,-J subject to Z,Bf < 5(20)

i=1 j=1 j=1

> Lasso: for every A, there is an s such that Bk solves:

2
n

P p
mﬁin Z yi — Bo — Z’Bjxi7j subject to Z ’,BJ’ < 5(2].)

i=1 j=1 j=1
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An alternative formulation for regularization
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When is the Lasso better than Ridge?

Example 1. Most of the coefficients are non-zero.
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» Bias, Variance, . The Lasso (—), Ridge (---).

» The bias is about the same for both methods.
» The variance of Ridge regression is smaller, so is the MSE.
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When is the Lasso better than Ridge?

Example 2. Only 2 coefficients are

non-zero.
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» Bias, Variance, . The Lasso (—), Ridge (---).

» The bias, variance, and MSE are lower for the Lasso.
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Elastic Net

Combines ||3]|3 (ridge) and ||B]|1 (lasso) penalties.

Elastic net solves the following optimization:

n

2
p p p
min > vi—Bo= 3 By | +red B A I (22)
j=1 j=1

i—1 j=1

In blue: the model RSS
In red: both ||3]|3 and ||5]|1

This provides a nice trade off between sparsity and grouping.

STATS 202: Data Mining and Analysis L. Tran 35/41



Elastic Net

Combines ||3]|3 (ridge) and ||B]|1 (lasso) penalties.

Elastic net solves the following optimization:

n

2
p p p
min > vi—Bo= 3 By | +red B A I (22)
j=1 j=1

i—1 j=1

In blue: the model RSS
In red: both ||3]|3 and ||5]|1

This provides a nice trade off between sparsity and grouping.

A2
A2+A1

Typically, we define a = and instead optimize:

n

2
p p p
mﬁi,n Slyi=B0=Y Bxij| +ad B +(1—a)d [5](23)
Jj=1

i=1 j=1 j=1
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An alternative formulation for regularization

Elastic net:
2
n p
mﬁin Z yi —Bo — Zﬁjxi,j st al|B)3+ (1 - a)||Bl1 < s(24)
i=1 j=1

2-dimensional illustration a = 0.5

B2

» Singularities at the vertexes (to
encourage sparsity)
> Strict convex edges (to encourage
grouping)
» The strength of convexity varies
with «
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Example:

Elastic net

Lasso

Elastic Net lambda = 0.5
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STATS 202:

s = |beta|/max|beta]

Data Mining and Analysis

s = |beta|/max|beta]

L. Tran 37/41



Shrinkage summaries

2

n P p p
mﬁin Z yi —Bo— Zﬁjx,',j + )\22 /312 + /\12 1Bjl - (25)
i=1 j=1 j=1 j=1
Method Shrinkage parameters
OoLS A1=X=0
Ridge A1 =0, >0
LASSO A1 >0,A=0
Elastic net A1>0,A>0
B,,zO A1 = 00 OFr Ap = 00
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Things to consider %

» If desired, we could instead consider L, penalties for values
other than 0, 1, and 2 (e.g. g € (1,2) or g > 2).

» Regularization methods such as the elastic net have been
extended to generalized linear models (GLM) as well.

» [; and L; penalties are also used in contexts other than linear
models (e.g. neural networks).

» As usual, we are faced with the bias-variance tradeoff when
choosing our shrinkage parameters, A1 and .

» Other regularized methods are also available, e.g.
» Non-negative Garotte Regression
» Least Angle Regression

> Best subset
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Degrees of freedom

Degrees of freedom give us a measure of our model’s complexity,
i.e. the number of free parameters to fit on our data.

» For OLS, the degrees of freedom is equal to p + 1.

» In regularized regression, our parameters are estimated in a
restricted manner, controlled by A; and A,.

» Effectively reduced the degrees of freedom in our model

» We can still compare across models using an effective degrees
of freedom:

Sl ,
df(y.9)= > >~ Covlyi, ilxi] (26)
i=1

» In the case of OLS, this can be shown to reduce to the
"standard” degrees of freedom, i.e. p+ 1.
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