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Announcements

▶ HW1 being graded (solutions released later tonight).

▶ HW2 due Monday.

▶ Midterm is in 1 week.

▶ Will be in person.

▶ Let the teaching staff know if you need special accomodations.

▶ Practice exam will be released tonight.

▶ Solutions to practice midterm will be posted on Friday.

▶ Class will start at 5PM next Monday (7/12)
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Outline

▶ The bootstrap

▶ Intro

▶ Types, uses, etc.

▶ Bagging

▶ The jackknife

▶ Intro

▶ Bootstrap vs jackknife
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Recap

Previously, we:

▶ Defined data generating mechanisms as true functions

▶ Proposed methods of estimating the functions

▶ Covered ways of evaluating model performance

How precise are our estimates?
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Standard errors

Recall:

▶ Using our data Pn, we can estimate our parameter ψ0

▶ Because our data is random, the estimate ψ̂n is random

▶ If ψ0 is e.g. a linear model coefficient, then can use closed
form formulas, e.g.

SE(β̂1)
2 = σ2∑n

i=1(xi−x̄)2
(1)
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Standard errors

An example: Standard errors in linear regression
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Standard errors

More generally: Obtain estimator’s sampling distribution

Example: The variance of a sample x1, x2, ..., xn

σ̂2n =
1

n − 1

n∑
i=1

(xi − x̄)2 (2)

How to get the standard error of σ̂2n

1. Assume x1, x2, ..., xn
iid∼ N (µ0, σ

2
0)

2. Assume that σ̂2n is close to σ20 and x̄ is close to µ0

3. Then σ̂2n(n − 1) has been shown to have a χ-squared
distribution with n degrees of freedom

4. The SD of this sampling distribution is the standard error
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Standard errors

What if:

▶ The sampling distribution is not easy to derive?

▶ Our distributional assumptions break down?

Some possible options:

1. Bootstrap

2. Jackknife

3. Influence functions

▶ Beyond scope of this course
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The Bootstrap

Method to simulate generating from the true distribution P0

▶ Provides standard error of estimates
▶ Popularized by Brad Efron (Stanford)

▶ Wrote “An Introduction to the
Bootstrap” with Robert Tibshirani

▶ Very popular among practitioners
▶ Computer intensive (d/t the approach)
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The bootstrap

▶ This resampling method is repeated
(say, B times) until we have “enough”
iterations to get a stable distribution.
▶ Results in a simulated sampling

distribution

▶ The SD of this sampling distribution is
our estimated standard error

▶ n.b. Two approximations are made:

SE (ψ̂n)
2

not so small︷︸︸︷
≈ ŜE (ψ̂n)

2

small︷︸︸︷
≈ ŜEB(ψ̂n)

2 (3)

STATS 202: Data Mining and Analysis L. Tran 11/35



The bootstrap

▶ This resampling method is repeated
(say, B times) until we have “enough”
iterations to get a stable distribution.
▶ Results in a simulated sampling

distribution
▶ The SD of this sampling distribution is

our estimated standard error

▶ n.b. Two approximations are made:

SE (ψ̂n)
2

not so small︷︸︸︷
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Bootstrap vs Cross-validation

Cross-validation: provides
estimates of the (test) error.

Bootstrap: provides the
(standard) error of estimates.
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Example. Investing in two assets

Suppose that X and Y are the returns of two assets.

The returns are observed every day, i.e. (x1, y1), ..., (xn, yn).
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Example. Investing in two assets

We only have a fixed amount of money to invest, so we’ll invest

▶ α in X and (1− α) in Y , where α is between 0 and 1, i.e.

αX + (1− α)Y (4)

Our goal: Minimize the variance of our return as a function of α

▶ One can show that the optimal α0 is:

α0 =
σ2Y − σXY

σ2X + σ2Y − 2σXY
(5)

▶ which we can estimate using our data, i.e.

α̂n =
σ̂2Y ,n − σ̂XY ,n

σ̂2X ,n + σ̂2Y ,n − 2σ̂XY ,n
(6)
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Example. Investing in two assets

If: we knew P0, we could just resample the n observations and
re-calculate α̂n.

▶ We could iterate on this until we have enough estimates to
form a sampling distribution

▶ Would then estimate the SE via the SD of the distribution
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Example. Investing in two assets

Reality: We don’t know P0 and only have n observations.

But: We can mimic as if we did know P0.
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▶ Assume that Pn is a good
approximation of P0

▶ Iteratively (say, B times):
▶ Resample from Pn, i.e. sample from

the n observations with replacement,
n times (call this P∗,r

n )
▶ Calculate α̂n from P∗,r

n (call this
α̂∗,r
n )

▶ Calculate the SD of the α̂∗,r
n

estimates, i.e.

ŜEB(α̂n) =

√√√√√ 1

B − 1

B∑
r=1

α̂∗,r
n − 1

B

B∑
r ′=1

α̂∗,r ′
n

2

(7)
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Bootstrap distribution vs true distribution
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Bootstrap and error rates

Each bootstrap iteration will only have about 2/3 of the original
data, i.e.

P(xj /∈ Pb
n ) = (1− 1/n)n (8)

We could use the out of bag observations to calculate estimate our
test set error, i.e.

Êrr =
1

n

n∑
i=1

1

|C−i |
∑

b∈C−i

L(yi , f̂
∗b(xi )) (9)

▶ Doing this still encounters ‘training-set’ bias (i.e. you’re using
less observations to estimate f0).
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Hypothetical Example. Patient headache

Let

▶ Xi ,j be an indicator that patient i took asprin on day j .

▶ Yi ,j be an indicator that patient i had a headache on day j .

We want the standard error for the
P(headache|asprinstatus)

Wrong way: Bootstrap over all i , j observations and calculate
P(headache|asprin)

Right way: Bootstrap by patient id and calculate
P(headache|asprin)
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Example simulation

Let
Yi ,Xi ∈ R : i = 1, 2, ..., n ∋ Yi = Xi + ϵi : ϵi ∼ N(0, σ2)

We wish to calculate the standard error of predictions.

Method 1: Rely on asymptotic theory

ŝe(ŷi ) =

√√√√σ̂2

(
1

n
+

(xi − x̄)2∑n
j=1(xj − x̄)2

)
(10)

Method 2: Bootstrap across B iterations and calculate

ŝe(ŷi ) =

√√√√ 1

B − 1

B∑
b=1

(ŷbi − ȳbi )
2 (11)
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(ŷbi − ȳbi )
2 (11)

STATS 202: Data Mining and Analysis L. Tran 20/35



Example simulation
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Bootstrap forms

Our presentation up to now has been on ‘nonparameteric ’
bootstrapping.

Intead, we could bootstrap the data other ways:

▶ Parametric: use the fitted model with some (e.g. Gaussian)
noise to construct our resampled data.

▶ Bayesian: resample points using weights.

▶ Residual: resample errors and add to predictions.

▶ Block: resample blocks (accounting for correlations).

▶ etc...
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Parametric Bootstrap

Let X ,Y ∈ R and assume Yi = Xi + ϵi : i = 1, 2, ..., n.

Parametric Bootstrap:

Y ∗
i = ŷi + ϵ∗i ; ϵ

∗
i ∼ N(0, σ̂2) : i = 1, 2, ..., n (12)

Repeat B times and take standard deviation over the

estimates.
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Confidence intervals

Bootstrap standard errors can be used to compute confidence
intervals, e.g.

▶ Normal-based interval

▶ Quantile interval

▶ Pivotal interval

▶ Studentized interval
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Normal-based confidence interval

The same as calculating an interval under a normal distribution

▶ Switch out asymptotic standard error with bootstrap estimate

▶ Only works well if the distribution of the statistic is close to
normal

Normal-based confidence interval

Cn = ψ̂n ± zα/2ŝeboot (13)

STATS 202: Data Mining and Analysis L. Tran 25/35



Quantile interval

Use the observed bootstrap distribution’s quantiles, e.g. select
2.5% and 97.5% values.

▶ Can result in noticeably different estimates under skewed
distributions.

Quantile confidence interval

Cn =
(
ψ̂∗
n,α/2, ψ̂

∗
n,1−α/2

)
(14)
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Pivotal confidence interval

Let Rn = R(X1, ...,Xn, ψ0) be a function who’s distribution does
not depend on ψ0.

▶ We can construct a CI for Rn without knowing ψ0

▶ Would then manipulate the CI to construct a CI for ψ0

▶ AKA “basic” interval in R

Defining Rn ≜ ψ̂n − ψ0 and estimating its distribution via
bootstrap gives us

Pivotal confidence interval

Cn = (2ψ̂n − ψ̂∗
n,1−α/2, 2ψ̂n − ψ̂∗

n,α/2) (15)
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Studentized confidence interval

We use studentized intervals

1. (Typically) requires nested bootstrapping for estimating ŝe∗b

Let

Z ∗
n,b =

ψ̂∗
n,b − ψ̂n

ŝe∗b
(16)

Studentized confidence interval

Cn = (ψ̂n − z∗1−α/2ŝeb, ψ̂n − z∗α/2ŝeb) (17)
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Estimating bias

For biased estimators, we may wish to “correct” the bias.

▶ Bootstrapping allows us to estimate the bias

We can estimate the bias via

b̂ = ψ̂n −
1

B

B∑
b=1

ψ̂∗
n,b (18)

And update our estimator as

ψ̃n = ψ̂n + b̂ (19)
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Bagging

Bootstrap Aggregation

▶ Create B replicates of data using bootstrap

▶ Apply a learning method to each replicate resulting in B fits,

i.e. f̂
(1)
n , ..., f̂

(B)
n

▶ Average the predictions across f̂
(b)
n , i.e.

f̂ bagn (x) =
1

B

B∑
b=1

f̂
(b)
n (x) (20)

Can greatly reduce the variance in estimators

▶ Particularly ones known for overfitting
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The jackknife

A resampling method (like the Bootstrap), but

▶ The Bootstrap resamples data from Pn and calculates Ψ̂(P̂∗
n)

▶ The Jackknife leaves out (random) partitions from Pn and
calculates Ψ̂(P̂∗

n)

Both methods use simulated distributions to calculate SE
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The jackknife

The general algorithm (applied to our investment example):

▶ Assume that Pn is a good approximation of P0 and choose a
number of observations d to delete

▶ where 0 < d < n

▶ Iteratively:

▶ Exclude d observations from our data (resulting in P∗,d
n )

▶ Calculate α̂n from P∗,d
n (call this α̂∗,d

n )

▶ Calculate the SD of the α̂∗,d
n estimates
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If d > 1:

ŜEB(α̂n) =

√√√√√n − d

d
(n
d

) ∑
z

α̂∗,z
n − 1(n

d

)∑
z ′

α̂∗,z ′
n

2

(21)

When d = 1, this simplifies to:

ŜEB(α̂n) =

√√√√√n − 1

n

n∑
i=1

α̂∗,i
n − 1

n

n∑
i ′=1

α̂∗,i ′
n

2

(22)

STATS 202: Data Mining and Analysis L. Tran 33/35



Jackknife vs Bootstrap

Some similarities:

▶ The Jackknife and Bootstrap are asymptotically equivalent

▶ The theoretical arguments proving the validity of both
methods rely on large samples

Some differences:

▶ The jackknife is less computationally expensive

▶ The jackknife is a linear approximation to the bootstrap

▶ The jackknife doesn’t work well for sample quantiles like the
median

▶ The bootstrap procedure has lots of variations

▶ e.g. You can bootstrap the bootstrapped samples to try and
get second-order accuracy (aka bootstrap-t)
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