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Announcements

▶ Python version of textbook is released!

▶ HW1 hopefully graded by Friday.

▶ Some students used old versions. Please use Ed 2.

▶ Feel free to use office hours & Piazza.

▶ HW2 due in 1 week.

▶ Midterm is in 9 days

▶ Requests for accommodations handled through Piazza

▶ Passing is C- (Credit/No credit) or D- (Letter Grade)
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Outline

▶ Evaluating classification models

▶ Confusion matrix

▶ Receiver Operating Characteristic curve

▶ Validation sets

▶ Data splitting

▶ Leave one out cross-validation

▶ K-fold cross-validation

▶ Cross-validation theory

▶ Ensembles
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Recap

Previously, we:

▶ Defined Multiple Linear Regression

▶ Generalized to Logistic Regression

▶ Covered potential issues with linear models

▶ Covered another linear model (LDA - as well as QDA)
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Linear Discriminant Analysis vs Logistic regression

Assume a two-class setting with one predictor

Linear Discriminant Analysis:

log

[
p1(x)

1− p1(x)

]
= c0 + c1x (1)

▶ c0 and c1 computed using µ̂0, µ̂1, and σ̂2

Logistic regression:

log

[
P[Y = 1|x ]

1− P[Y = 1|x ]

]
= β0 + β1x (2)

▶ β0 and β1 estimated using MLE
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Comparison of classification methods
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Evaluating a model

Recall: Our standard prediction error functions are

▶ Classification: Cross-entropy

ĈE (f̂n) = En[−y log f̂n(x)] (3)

▶ Regression: Mean squared error

ˆMSE (f̂n) = En[y − f̂n(x)]
2 (4)

While MSE has an intuitive interpretation, CE is harder to explain.

▶ Typically, other losses are used to evaluate classification
methods
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Evaluating a classification method

Many practitioners use the 0-1 loss:

1

n

n∑
i=1

I[yi ̸= ŷi ] (5)

▶ Can be thought of as 1− accuracy

▶ Possible to make the wrong prediction for some classes more
often than others

▶ The 0-1 loss doesn’t tell you anything about this

▶ A much more informative error summary is a confusion matrix
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Evaluating a classification method

We can calculate a number of statistics from this table, e.g.

▶ True positive rate (aka Sensitivity, aka Recall)

P[Predicted + |True +], i.e. TP/P (6)

▶ True negative rate (aka Specificity)

P[Predicted − |True −], i.e. TN/N (7)

▶ Positive predicted value (aka Precision)

P[True + |Predicted +], i.e. TP/P∗ (8)

▶ Negative predicted value

P[True − |Predicted −], i.e. TN/N∗ (9)
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Evaluating a classification method

We can also calculate summary statistics, e.g. the F1-score

F1 = 2 · Precision · Recall
Precision + Recall

(10)
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Example: Predicting default

Predicting credit card default in a dataset of 10K people

▶ Predicted “yes” if P̂n[default = yes|X] > 0.5

▶ The error rate among people who do not default is very low
(i.e. high specificity)

▶ The error rate among people who default (false negative rate)
is high at 76% (i.e. low sensitivity)

▶ i.e. FN/P

▶ It’s likely that false negatives are a bigger source of concern
▶ Possible solution: Change the classifier threshold
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Example: Predicting default

Predicting credit card default in a dataset of 10K people

▶ Predicted “yes” if P̂n[default = yes|X] > 0.2

▶ The false negative rate is now 41%

▶ The false positive rate has increased (from < 1% to 2%)

▶ So, we’re paying a price for reducing the false negative rate
(i.e. there’s a trade-off)
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Example: Predicting default

Viewing the trade-off over different thresholds
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▶ – – – False negative rate (error for defaulting customers)

▶ · · · · · False positive rate (error for non-defaulting customers)

▶ —— 0-1 loss or total error rate
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Example: Predicting default

The Receiver Operating Characteristic (ROC) curve:

ROC Curve
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▶ Displays the performance for every
threshold choice.

▶ The Area Under the Curve (AUC)
summarizes the classifier
performance, e.g.
▶ The closer AUC is to 1, the

better the performance.
▶ AUC = 0.5 is equivalent to a

random classifier.
▶ The minimum value

(otherwise, you’d just flip the
class predictions).

▶ AUC is equivalent to the
Mann–Whitney U test.
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Loss functions

▶ In general, we want to optimize for loss functions that are
specific to our (applied) problem

▶ e.g. When predicting credit default, we’ll likely care more
about the precision or recall

▶ i.e. Natural loss function is not the cross-entropy or 0-1 loss

▶ Even if we use one method which minimizes a certain kind of
training error, we can tune it to optimize our true loss
function

▶ e.g. Find the threshold that brings the recall above an
acceptable level
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Validation

Recall: Training our model on a dataset and evaluating on the
same dataset leads to (overly) optimistic results

▶ We care about the error on P0, not Pn

Additionally: We have hyper-parameters that we have to tune,
e.g.

▶ The number of neighbors k in k-nearest neighbors

▶ The number of variables in forward/backward step selection

▶ The order of a polynomial in polynomial regression
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Validation sets

Typically: Datasets are divided into three parts

1. Training set: data you use to train your model parameters

2. Development set: data you use to tune your model
hyper-parameters

3. Test set: data you use to evaluate your model after it’s been
trained

Keeping separate development/test sets prevents the model from
over-fitting (providing overly optimistic prediction errors)

n.b. The terminology will vary across fields, e.g.

▶ Sometimes, people refer to the “development” set as the
“validation” set

▶ The course textbook refers to the “test” set as the
“validation” set
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Validation sets

In practice, may not need a development set. Consequently, you’ll

1. Split the data into two parts (i.e. a train and test set)

2. Train on the first part

3. Compute the error on the second part

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

%!!""!! #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!& !

Visualization of data splitting

n.b. You’ll want to split the data randomly

▶ Avoids possible correlation (e.g. between households)
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Validation sets

Comparing scenarios:
Assume n = 1000, and consider the three splits

1. ntrain = 500 and ntest = 500

2. ntrain = 50 and ntest = 950

3. ntrain = 950 and ntest = 50

What happens to the model fit and prediction errors?

▶ Scenario 2 has high model variance, but lower variance in
estimates of prediction error

▶ Scenario 3 has low model variance, but higher variance in
estimates of prediction error

▶ Scenario 1 provides a trade-off between the two
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Validation sets

Example: Polynomial regression to estimate mpg from horsepower
in the Auto data
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MSE under different samples for the test split

Problem: Every split yields a different estimate of the error

STATS 202: Data Mining and Analysis L. Tran 20/38



Leave one out cross-validation (LOOCV)

Allows us to use every observation as the test split

1. For i = 1, 2, ..., n:

▶ Train the model on every point except i

▶ Compute the test error on point i

2. Average the test errors

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

%!

%!

%!
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Leave one out cross-validation (LOOCV)

Allows us to use every observation as the test split

1. For i = 1, 2, ..., n:

▶ Train the model on every point except i

▶ Compute the test error on point i

2. Average the test errors

For regression:

CV(n) =
1

n

n∑
i=1

(yi − ŷ
(−i)
i )2 (11)

For classification:

CV(n) =
1

n

n∑
i=1

I[yi ̸= ŷ
(−i)
i ] (12)
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Leave one out cross-validation (LOOCV)

Computing CV(n) can be computationally expensive, since it
involves fitting the model n times.

For linear regression, there is a shortcut:

CV(n) =
1

n

n∑
i=1

(
yi − ŷi
1− hii

)2

(13)

where hii is the leverage statistic (Chapter 3).
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k-fold cross validation

Rather than LOOCV, we can just divide the data into k splits (aka
folds)

1. Divide the data into k splits (aka folds)

2. For i = 1, ..., k :

a Train your model on all the data excluding the i th fold

b Compute the prediction error on the i th fold

3. Average the errors over the k splits

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!
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LOO vs k-fold cross validation
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▶ k-fold CV depends on the chosen split

▶ In k-fold CV, we train the model on less data than what is
available.

▶ Introduces bias into estimates of the test error

▶ In LOOCV, the fitted models are very correlated

▶ Increases variance of the estimates of the test error
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LOO vs k-fold cross validation

Choosing an optimal model
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▶ Despite the bias-variance tradeoff, the error estimates still
(generally) tend to be pretty similar

▶ Choosing the model with the minimum cross validation error
often leads to the method with minimum test error
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Choosing an optimal model

In classification, we can take the same approach, e.g.
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▶ - - - Bayes boundary

▶ —— Logistic regression with
polynomial predictors of increasing
degree.
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Choosing an optimal model

n.b. We don’t know Bayes boundary in practice, but can choose
the fit with the lowest error rate, e.g.
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The one standard error rule

Forward stepwise selection

Blue: 10-fold cross validation
Yellow: True test error

▶ A number of models with
9 ≤ p ≤ 15 have the same CV
error.

▶ The vertical bars represent 1
standard error in the test error
from the 10 folds.

▶ Rule of thumb: Choose the
simplest model whose CV error
is no more than one standard
error above the model with the
lowest CV error.
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The wrong way to do cross validation

Suppose we want to classify 200 individuals according to whether
they have cancer or not.

▶ We use logistic regression onto 1, 000 measurements of gene
expression

Our proposed strategy

▶ Using all our data, select the 20 most significant genes using
z-tests

▶ Estimate the test error of logistic regression with these 20
predictors via 10-fold cross validation
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The wrong way to do cross validation

Suppose we want to classify 200 individuals according to whether
they have cancer or not.

Let’s simulate some data so that we know the true distribution P0

▶ Each gene expression (of the 1, 000) is standard normal and
independent of all others

▶ The response (cancer or not) is sampled from a coin flip — no
correlation to any of the “genes”

Under these settings, the misclassification rate for any
classification method using these predictors should be
50%
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The wrong way to do cross validation

Runing this simulation gives us CV error rate of 3%!

Why is this?

▶ Since we only have 200 individuals in total, among 1, 000
variables, at least some will be correlated with the response

▶ Doing variable selection using all the data, means that the
variables we select will have some correlation with the
response in every subset or fold in the cross validation
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The right way to do cross validation

▶ Divide the data into 10 folds

▶ For i = 1, ..., 10:

a Using every fold except i , perform both the variable selection
and model fit with the selected variables

b Compute the prediction error on the i th fold

▶ Average the errors over the 10 splits

The simulation produces an error estimate of close to 50%

Moral of the story: Every aspect of the learning method that
involves using the data (variable selection, for example) must be
cross-validated

STATS 202: Data Mining and Analysis L. Tran 33/38



The right way to do cross validation

▶ Divide the data into 10 folds

▶ For i = 1, ..., 10:

a Using every fold except i , perform both the variable selection
and model fit with the selected variables

b Compute the prediction error on the i th fold

▶ Average the errors over the 10 splits

The simulation produces an error estimate of close to 50%

Moral of the story: Every aspect of the learning method that
involves using the data (variable selection, for example) must be
cross-validated

STATS 202: Data Mining and Analysis L. Tran 33/38



Why cross validation works

Recall: We’re interested in estimating some function f0 within a
space of probability functions.

▶ How do we define ‘best’ within this space?

Define O = (X1, ...,Xp,Y ) ∼ P0

f0 = argmin
f ∈F

∫
L(o, f )∂P0(o) (14)

where L(O, f ) is a bounded loss function with finite variance.

We define the distance between f and f0 as

d0(f , f0) ≜ EP0 [L(O, f )− L(O, f0)] (15)

The best estimator is the one that minimizes d0(f , f0)
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Why cross validation works

Let f̂ kn = Ψ̂k(Pn) : k = 1, 2, ...,K be the K estimators we’re
evaluating. Our cross-validation selector is

K̂ (Pn) ≜ argmin
k

EBn

∫
L(o, Ψ̂k(P

0
n,Bn

))∂P1
n,Bn

(o) (16)

Consider an oracle selector:

K̃ (Pn) ≜ argmin
k

EBn

∫
L(o, Ψ̂k(P

0
n,Bn

))∂P0(o) (17)

Then for any δ > 0,

E0d0(Ψ̂K̂(Pn)
(P0

n,Bn
), f0) ≤ (1 + 2δ)E0d0(Ψ̂K̃(Pn)

(P0
n,Bn

), f0)

+ C (δ)
log(K )

n

(18)

where C (δ) is a constant.
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Why cross validation works

What this means:

▶ If none of the candidate learners converge at a parametric
rate, the cross validated selector performs asymptotically as
well (in the risk difference sense) as the oracle selector.

▶ If one of the candidate learners searches within a parametric
model (that contains f0), and thus achieves a parametric rate
of convergence, then the cross validated selector achieves the
almost parametric rate of convergence log n/n.
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Stacking / Ensembling

Question: Rather than just picking one estimator, can we combine
them? e.g.

K̄ (Pn) ≜ α1Ψ̂1(P
0
n,Bn

) + · · ·+ αK Ψ̂K (P
0
n,Bn

) :
K∑

k=1

αk = 1 (19)

Each weighted average is a unique candidate algorithm in our
‘augmented ’ library. e.g.

▶ Taking the average across the estimators corresponds to
αk = 1/K .

We could then apply the cross validated selector to this augmented
library.

▶ Alternatively: could just estimate the αk ’s directly.

▶ Could also make αk ’s dependent on our inputs (X1, ...,Xp).
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