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Announcements

▶ HW1 due Friday.

▶ Can ask for regrades up to a week from grades being released.

▶ Solutions will be posted on Tuesday.

▶ Use Piazza if you want to form study groups.

▶ Hw1 data is now on the course webpage.
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Outline

▶ Regression issues

▶ Comparing linear regression to KNN

▶ More classification

▶ Logistic regression

▶ Linear/quadratic discriminant analysis
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Recap

So far, we have:

▶ Defined Multiple Linear Regression

▶ Discussed how to estimate model parameters

▶ Discussed how to test the importance of variables

▶ Described one approach to choose a subset of variables

▶ Explained how to code dummy indicators

What are some potential issues?
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Potential issues in linear regression

▶ Interactions between predictors

▶ Non-linear relationships

▶ Correlation of error terms

▶ Non-constant variance of error (heteroskedasticity)

▶ Outliers

▶ High leverage points

▶ Collinearity

▶ Mis-specification
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Interactions between predictors

Linear regression has an additive assumption, e.g.:

sales = β0 + β1 · tv+ β2 · radio+ ϵ (1)

e.g. An increase of $ 100 dollars in TV ads correlates to a fixed
increase in sales, independent of how much you spend on radio
ads.

If we visualize the residuals, it is clear that this is false:

Sales

Radio

TV
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Interactions between predictors

One way to deal with this:

▶ Include multiplicative variables (aka interaction variables) in
the model

sales = β0 + β1 · tv + β2 · radio + β3 · (tv × radio) + ϵ (2)

▶ Makes the effect of TV ads dependent on the radio ads (and
vice versa)

▶ The interaction variable is high when both tv and radio are
high
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Interactions between predictors

Two ways of including interaction variables (in R):

▶ Create a new variable that is the product of the two

▶ Specify the interaction in the model formula
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Non-linear relationships
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Scatterplots between X and Y may
reveal non-linear relationships
▶ Solution: Include polynomial

terms in the model

MPG =β0 + β1 · horsepower
+ β2 · horsepower2

+ β3 · horsepower3 + ...+ ϵ

(3)
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Non-linear relationships

In 2 or 3 dimensions, this is easy to visualize. What do we do when
we have too many predictors?

Plot the residuals against the response and look for a
pattern:
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Correlation of error terms

We assumed that the errors for each sample are
independent:

yi = f (xi ) + ϵi : ϵi
iid∼ N (0, σ2) (4)

When it doesn’t hold:

▶ Invalidates any assertions about Standard Errors, confidence
intervals, and hypothesis tests

Example: Suppose that by accident, we double the data (i.e. we
use each sample twice). Then, the standard errors would be
artificially smaller by a factor of

√
2.
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Correlation of error terms

Examples of when this happens:

▶ Time series: Each sample corresponds to a different point in
time. The errors for samples that are close in time are
correlated.

▶ Spatial data: Each sample corresponds to a different location
in space.

▶ Clustered data: Study on predicting height from weight at
birth. Suppose some of the subjects in the study are in the
same family, their shared environment could make them
deviate from f (x) in similar ways.
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Correlation of error terms

Simulations of time series with increasing correlations on ϵi .
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Non-constant variance of error (heteroskedasticity)

The variance of the error depends on the input value.

To diagnose this, we can plot residuals vs. fitted values:
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Solution: If the trend in variance is relatively simple, we can
transform the response using a logarithm, for example.
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Outliers

Outliers are points with very large errors, e.g.
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While they may not affect the fit, they might affect our assessment
of model quality.

Possible solutions:

▶ If we believe an outlier is due to an error in data collection, we
can remove it.

▶ An outlier might be evidence of a missing predictor, or the
need to specify a more complex model.
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High leverage points

Some samples with extreme inputs have a large effect on β̂.
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This can be measured with the leverage statistic or self
influence:

hii =
∂ŷi
∂yi

= (X(X⊤X)−1X⊤︸ ︷︷ ︸
Hat matrix)

)i ,i ∈
[
1

n
, 1

]
(5)

Values closer to 1 have high leverage.
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Studentized residuals
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▶ The residual ϵ̂i = yi − ŷi is an estimate for the noise ϵi

▶ The standard error of ϵ̂i is σ
√
1− hii

▶ A studentized residual is ϵ̂i divided by its standard error

▶ It follows a Student-t distribution with n − p − 2 degrees of
freedom

STATS 202: Data Mining and Analysis L. Tran 17/49



Collinearity

Two predictors are collinear if one explains the other well,
e.g.

limit = a× rating + b (6)

i.e. they contain the same information
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Collinearity

Problem: The coefficients become unidentifiable.

▶ i.e. different coefficients can mean the same fit

Example: using two identical predictors (limit):

balance = β0 + β1 · limit + β2 · limit (7)

= β0 + (β1 + 100) · limit + (β2 − 100) · limit (8)

The fit (β̂0, β̂1, β̂2) is just as good as (β̂0, β̂1+100, β̂2−100)
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Collinearity effect

Collinearity results in unstable estimates of β.
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Recognizing collinearity

If 2 variables are collinear, we can easily diagnose this using their
correlation.

A group of q variables is multilinear if these variables “contain less
information” than q independent variables. Pairwise correlations
may not reveal multilinear variables.

The Variance Inflation Factor (VIF) measures how necessary a
variable is, or how predictable it is given the other variables:

VIF (β̂j) =
1

1− R2
Xj |X−j

, (9)

where R2
Xj |X−j

is the R2 statistic for multiple linear regression of

the predictor Xj onto the remaining predictors.
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Dealing with collinearity

Three primary ways:

1. Drop one of the correlated features (e.g. Ridge/LASSO).

2. Combine the correlated features (e.g. PCA).

3. More data.
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Mis-specification

What if our true distribution P0 isn’t linear?

Estimates will still converge to a fixed value within our model,
e.g.

θ0 ≜ argmin
θ

D(Pθ,P0) : θ = (β0, ..., βp) (10)
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Comparing Linear Regression to K-nearest neighbors

Linear regression: prototypical parametric method
KNN regression: prototypical nonparametric method

f̂n(x) =
1

K

∑
i∈NK (x)

yi (11)

yy

x1x1

x 2x 2

Examples of KNN with K = 1 (left) and K = 9 (right)
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Comparing Linear Regression to K-nearest neighbors

Linear regression: prototypical parametric method
KNN regression: prototypical nonparametric method Long story
short:

▶ KNN is better when the function f0 is not linear (and plenty
of data)

▶ Question: What if the true function f0 IS linear?

▶ When n is not much larger than p, even if f0 is nonlinear,
linear regression can outperform KNN.

▶ KNN has smaller bias, but this comes at a price of (much)
higher variance (c.f. overfitting)
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Comparing Linear Regression to K-nearest neighbors

KNN estimates for a simulation from a linear model

▶ True function f0 is linear
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Comparing Linear Regression to K-nearest neighbors

Linear models dominate KNN

▶ We’re able to gain statistical efficiency by taking advantage of
the linear association

−1.0 −0.5 0.0 0.5 1.0

1
2

3
4

0.2 0.5 1.0

0
.0

0
0
.0

5
0
.1

0
0
.1

5

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

y

x 1/K

STATS 202: Data Mining and Analysis L. Tran 27/49



Comparing Linear Regression to K-nearest neighbors

Increasing deviations from linearity
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Comparing Linear Regression to K-nearest neighbors

When there are more predictors than observations, linear regression
dominates
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When p >> n, each sample has no nearest neighbors, this is
known as the curse of dimensionality.

▶ The variance of KNN regression is very large
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Classification problems

Recall: Supervised learning with a qualitative or categorical
response. As common (if not more) than regression

▶ Medical diagnosis: Given the symptoms a patient shows,
predict which of 3 conditions they are attributed to

▶ Online banking: Determine whether a transaction is fraudulent
or not, on the basis of the IP address, client’s history, etc.

▶ Web searching: Based on a user’s attributes and the string of
a web search, predict which link a person will click

▶ Online advertising: Predict whether a user will click on an ad
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Classification problems

Recall: In classification, the function f0 we care about is

f0 ≜ P0[Y = y |X1,X2, ...,Xp] (12)

To get a prediction, we use the Bayes Classifier:

ŷ = argmax
y

P0[Y = y |X1,X2, ...,Xp] (13)

Example: Suppose Y ∈ {0, 1}. We could use linear model:

P[Y = 1|X] = β0 + β1X1 + · · ·+ βpXp (14)

Problems:

▶ This would allow probabilities < 0 and > 1

▶ Difficult to extend to more than 2 categories
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Logistic regression

An idea:
Let’s apply a function to the result to keep it within [0, 1]

g−1(z) =
1

1 + exp(−z)
(15)

i.e.

P[Y = 1|X] = 1

1 + exp(−(β0 + β1X1 + · · ·+ βpXp))
(16)

This is equivalent to modeling the log-odds, e.g.

log

[
P[Y = 1|X]
P[Y = 0|X]

]
= β0 + β1X1 + · · ·+ βpXp (17)

n.b. exp(βj) is commonly referred to as the odds-ratio for Xj
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Fitting a logistic regression

Let (x1, y1), (x2, y2), ..., (xn, yn) be our training data.

In the linear model

log

[
P[Y = 1|X]
P[Y = 0|X]

]
= β0 + β1X1 + · · ·+ βpXp, (18)

We don’t actually observe the left side

▶ We observe Y ∈ {0, 1}, not probabilities

▶ This prevents us from using e.g. least squares to estimate our
parameters
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Fitting a logistic regression

Solution:
Let’s try to maximize the probability of our training data

L(θ) =
n∏

i=1

P(Y = yi |X = xi ) (19)

=
n∏

i=1

pyii · (1− pi )
1−yi (20)

where pi = g−1(β0 + β1x1,i + · · ·+ βpxp,i )

▶ We look for θ such that L(θ) is maximized

▶ aka Maximum likelihood estimation (MLE)

▶ Has no closed form solution, so solved with numerical
methods (e.g. Newton’s method)
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Fitting a logistic regression

Note:
We typically deal with the log-likelihood:

ℓ(θ) = logL(θ) (21)

=
n∑

i=1

yi log(pi ) + (1− yi ) log(1− pi ) (22)

=
1∑

k=0

n∑
i=1

I(Yi = k) log(P(k |X = xi )) (23)
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Fitting a logistic regression

Given our loss function:

ℓ(θ) =
n∑

i=1

yi log(pi ) + (1− yi ) log(1− pi ) (24)

Where

pi =
1

1 + exp(−Zi )
(25)

Zi = Xiβ (26)

We can deriving the gradient using the chain rule:

∂ℓ(θ)

∂β
=

∂ℓ(θ)

∂pi
× ∂pi

∂Zi
× ∂Zi

∂β
(27)
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Logistic regression in R

Estimating uncertainty

▶ We can estimate the Standard Error of each coefficient (e.g.
using Fisher’s information)

IY(β) = −Eβ[∇2ℓ(β)] (28)

▶ The z-statistic (for logistic regression) is the equivalent of the
t-statistic (in linear regression):

z =
β̂j

ŜE (β̂j)
(29)

▶ The p-values are test of the null hypothesis βj = 0
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Logistic regression in R

Example fit
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Example: Predicting credit card default

Predictors:

▶ student: 1 if student, 0 otherwise

▶ balance: credit card balance

▶ income: person’s income

In this dataset there is confounding, but little collinearity

▶ Students tend to have higher balances. So, balance is
explained by student, but not very well.

▶ People with a high balance are more likely to default.

▶ Among people with a given balance, students are less likely to
default.
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Example: Predicting credit card default

Predictors:

▶ student: 1 if student, 0 otherwise

▶ balance: credit card balance

▶ income: person’s income
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Example: Predicting credit card default
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Some issues with logistic regression

▶ The coefficients become unstable when there is collinearity

▶ This also affects the convergence of the fitting algorithm

▶ When the classes are well separated, the coefficients become
unstable

▶ This is always the case when p ≥ n − 1.

▶ Sometimes may not converge

▶ e.g. Needs more iterations
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Linear Discriminant Analysis

A linear model (like logistic regression). Unlike logistic regression:

▶ Does not become unstable when classes are well separated

▶ With small n and X approximately normal, is stable

▶ Popular when we have > 2 classes

High level idea:
Model distribution of X given Y , and apply Bayes’ theorem,
i.e.

P(Y = k |X = x) =
πk fk(x)∑K
l=1 πl fl(x)

(30)

▶ A common assumption is fk(x) is Gaussian
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Linear Discriminant Analysis

Example: K = 2 with Gaussian fk(x) and common σ2

P(Y = k|X = x) =
πk fk(x)∑K
l=1 πl fl(x)

(31)

=
πk

1√
2πσ

exp
(
− 1

2σ2 (x − µk)
2
)∑2

l=1 πl
1√
2πσ

exp
(
− 1

2σ2 (x − µl)2
) (32)

Taking the log and rearranging gives:

δk(x) = x · µk

σ2
−

µ2
k

2σ2
+ log(πk) (33)

If π1 = π2, our Bayes Classifier is:

2x(µ1 − µ2) > µ2
1 − µ2

2 (34)
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Linear Discriminant Analysis

Example of LDA
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Quadratic Discriminant Analysis

Similar to LDA

▶ Assumes Gaussian fk(x)
▶ Unlike LDA:

▶ Assumes each class has its own covariance matrix (Σk)

This results in a quadratic discriminant function:

δk(x) = −1

2
(x − µk)

⊤Σ−1
k (x − µk)−

1

2
log |Σk |+ log πk

= −1

2
x⊤Σ−1

k x + x⊤Σ−1
k µk −

1

2
µ⊤
k Σ

−1
k µk −

1

2
log |Σk |+ log πk

(35)

This results in more parameters to fit:

▶ LDA: Kp parameters
▶ QDA: Kp(p + 1)/2 parameters
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Linear Discriminant Analysis vs Logistic regression

Assume a two-class setting with one predictor

Linear Discriminant Analysis:

log

[
p1(x)

1− p1(x)

]
= c0 + c1x (36)

▶ c0 and c1 computed using µ̂0, µ̂1, and σ̂2

Logistic regression:

log

[
P[Y = 1|x ]

1− P[Y = 1|x ]

]
= β0 + β1x (37)

▶ β0 and β1 estimated using MLE
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Comparison of classification methods
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