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Announcements

» HW1 due Friday.
» Can ask for regrades up to a week from grades being released.

» Solutions will be posted on Tuesday.
» Use Piazza if you want to form study groups.

» Hwl data is now on the course webpage.
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Outline

P> Regression issues
» Comparing linear regression to KNN
» More classification

» Logistic regression

» Linear/quadratic discriminant analysis
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So far, we have:

» Defined Multiple Linear Regression

» Discussed how to estimate model parameters

» Discussed how to test the importance of variables

» Described one approach to choose a subset of variables
» Explained how to code dummy indicators

What are some potential issues?
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Potential issues in linear regression

Interactions between predictors

Non-linear relationships

Correlation of error terms

Non-constant variance of error (heteroskedasticity)
Outliers

High leverage points

Collinearity

vV v v v V. vV VY

Mis-specification
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Interactions between predictors

Linear regression has an additive assumption, e.g.:

sales = By + 1 - tv + B - radio + ¢ (1)

e.g. An increase of $ 100 dollars in TV ads correlates to a fixed
increase in sales, independent of how much you spend on radio
ads.

If we visualize the residuals, it is clear that this is false:
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Interactions between predictors

One way to deal with this:
» Include multiplicative variables (aka interaction variables) in

the model

sales = By + (1 - tv + B2 - radio + (33 - (tv x radio) + € (2)

» Makes the effect of TV ads dependent on the radio ads (and
vice versa)

» The interaction variable is high when both tv and radio are
high
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Interactions between predictors

Two ways of including interaction variables (in R):
> Create a new variable that is the product of the two

» Specify the interaction in the model formula

> 1m.fit=1m(Sales~.+Income:Advertising+Price:Age,data=Carseats)
> summary (1m.fit)

Call:
ln(formula = Sales ~ . + Income:Advertising + Price:Age, data =
Carseats)

Residuals :
Min 1Q Median 3Q Max
-2.921 -0.7560 0.018 0.6756 3.341

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 6.575665 1.008747 6.52 2.2e-10 *x*
CompPrice 0.092937 0.004118 22.57 < 2e-16 **x
Income 0.010894 0.002604 4.18 3.6e-05 **x
Advertising 0.070246 0.022609 3.11 0.00203 =**
Population 0.000159 0.000368 0.43 0.66533
Price -0.100806  0.007440 -13.55 < 2e-16 *x*
ShelveLocGood 4.848676 0.152838 31.72 < 2e-16 **x*
ShelveLocMedium 1.953262 0.125768 15.53 < 2e-16 **x
Age -0.057947 0.015951 -3.63 0.00032 ***
Education -0.020852 0.019613 -1.06 0.28836
UrbanYes 0.140160 0.112402 1.256 0.21317
USYes -0.1575567  0.148923 -1.06 0.29073
Income:Advertising 0.000751 0.000278 2.70 0.00729 *x
Price:Age 0.000107 0.000133 0.80 0.42381
Signif. codes: O ’***x’ 0.001 ’*%’ 0.01 ’*’ 0.06 ’.” 0.1 *> ’ 1
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Non-linear relationships

Scatterplots between X and Y may
reveal non-linear relationships
» Solution: Include polynomial
terms in the model

MPG =py + 1 - horsepower

+ B2 - horsepower?

P + B3 - horsepower® + ... + ¢
(3)
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Non-linear relationships

In 2 or 3 dimensions, this is easy to visualize. What do we do when
we have too many predictors?
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Non-linear relationships

In 2 or 3 dimensions, this is easy to visualize. What do we do when
we have too many predictors?

Plot the residuals against the response and look for a

pattern:
Residual Plot for Linear Fit Residual Plot for Quadratic Fit
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Correlation of error terms

We assumed that the errors for each sample are
independent:

yi=f(x;))+ €€ iid (0,02) (4)
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Correlation of error terms

We assumed that the errors for each sample are
independent:

yi=f(x;))+ €€ iid (0,02) (4)
When it doesn't hold:

» Invalidates any assertions about Standard Errors, confidence
intervals, and hypothesis tests

Example: Suppose that by accident, we double the data (i.e. we
use each sample twice). Then, the standard errors would be
artificially smaller by a factor of v/2.
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Correlation of error terms

Examples of when this happens:

» Time series: Each sample corresponds to a different point in
time. The errors for samples that are close in time are
correlated.

» Spatial data: Each sample corresponds to a different location
in space.

» Clustered data: Study on predicting height from weight at
birth. Suppose some of the subjects in the study are in the
same family, their shared environment could make them
deviate from f(x) in similar ways.
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Correlation of error terms

Simulations of time series with increasing correlations on ¢;.

p=0.0

Observation
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Non-constant variance of error (heteroskedasticity)

The variance of the error depends on the input value.

To diagnose this, we can plot residuals vs. fitted values:

Response Y Response log(Y)
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Non-constant variance of error (heteroskedasticity)

The variance of the error depends on the input value.

To diagnose this, we can plot residuals vs. fitted values:
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Solution: If the trend in variance is relatively simple, we can
transform the response using a logarithm, for example.
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Outliers

Outliers are points with very large errors, e.g.
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While they may not affect the fit, they might affect our assessment

of model quality.
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Outliers

Outliers are points with very large errors, e.g.

Residuals

Studentized Residuals
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While they may not affect the fit, they might affect our assessment
of model quality.

Possible solutions:

If we believe an outlier is due to an error in data collection, we
can remove it.
15/49
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High leverage points

Some samples with extreme inputs have a large effect on .

w A 020
an’
©
3 oo 410
s
:
N o o 4
- 3
2
R
3 oA
2 ©° o
12
- O [
o o
T T T T T T

0.00 0.05 0.10 0.15 0.20 0.25

X X1 Leverage

This can be measured with the leverage statistic or self

influence:
hi; = 9% _ (X(XTX)"IxT);; € o (5)
y; N — — n’
Hat matrix)

Values closer to 1 have high leverage.
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Studentized residuals

Studentized Residuals
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X X4 Leverage

» The residual €& = y; — y; is an estimate for the noise ¢;
» The standard error of €; is ov/1 — hj;
» A studentized residual is €; divided by its standard error

» |t follows a Student-t distribution with n — p — 2 degrees of
freedom
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Collinearity

Two predictors are collinear if one explains the other well,

e.g.
limit = a x rating + b (6)

i.e. they contain the same information
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Collinearity

Problem: The coefficients become unidentifiable.

> j.e. different coefficients can mean the same fit
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Collinearity

Problem: The coefficients become unidentifiable.
> j.e. different coefficients can mean the same fit

Example: using two identical predictors (1imit):

balance = (o + B1 - limit 4 B2 - limit (7)
= o+ (B1 + 100) - limit + (B2 — 100) - limit ~ (8)

The fit (ﬁAo, B, ,5’2) is just as good as (ﬂAo, By +100, B, — 100)

STATS 202: Data Mining and Analysis L. Tran 19/49



Collinearity effect

Collinearity results in unstable estimates of 3.
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Recognizing collinearity %

If 2 variables are collinear, we can easily diagnose this using their
correlation.

A group of g variables is multilinear if these variables “contain less
information” than g independent variables. Pairwise correlations
may not reveal multilinear variables.

The Variance Inflation Factor (VIF) measures how necessary a
variable is, or how predictable it is given the other variables:

; 1
VIF(3)) = -5z (9)
Xjl1X—j

where R)2<-|x _is the R? statistic for multiple linear regression of
J —J
the predictor X; onto the remaining predictors.
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Dealing with collinearity

Three primary ways:
1. Drop one of the correlated features (e.g. Ridge/LASSO).
2. Combine the correlated features (e.g. PCA).
3. More data.
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Mis-specification

What if our true distribution Py isn’t linear?

Estimates will still converge to a fixed value within our model,
e.g.
0o & argaminD(Pg, Po) : 0 = (Bo, ..., Bp) (10)
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Comparing Linear Regression to K-nearest neighbors

Linear regression: prototypical parametric method
KNN regression: prototypical nonparametric method

> i (11)

iGNK(X)

L ol o

Examples of KNN with K =1 (left) and K = 9 (right)
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Comparing Linear Regression to K-nearest neighbors

Linear regression: prototypical parametric method
KNN regression: prototypical nonparametric method Long story
short:

» KNN is better when the function fy is not linear (and plenty
of data)

» Question: What if the true function fy IS linear?
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Comparing Linear Regression to K-nearest neighbors

Linear regression: prototypical parametric method
KNN regression: prototypical nonparametric method Long story
short:

» KNN is better when the function fy is not linear (and plenty
of data)

» Question: What if the true function fy IS linear?

» When n is not much larger than p, even if fy is nonlinear,
linear regression can outperform KNN.
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Comparing Linear Regression to K-nearest neighbors

Linear regression: prototypical parametric method

KNN regression: prototypical nonparametric method Long story
short:

» KNN is better when the function fy is not linear (and plenty
of data)

» Question: What if the true function fy IS linear?

» When n is not much larger than p, even if fy is nonlinear,
linear regression can outperform KNN.

» KNN has smaller bias, but this comes at a price of (much)
higher variance (c.f. overfitting)
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Comparing Linear Regression to K-nearest neighbors

KNN estimates for a simulation from a linear model

» True function fy is linear

< -

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

KNN fits with K =1 (left) and K = 9 (right)
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Comparing Linear Regression to K-nearest neighbors

Linear models dominate KNN

> We're able to gain statistical efficiency by taking advantage of
the linear association
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Comparing Linear Regression to K-nearest neighbors

Increasing deviations from linearity
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Comparing Linear Regression to K-nearest neighbors

When there are more predictors than observations, linear regression

dominates
p=1 p=2 p=3 p=4 p=10 p=20
o o o o o g o
8 /
E oo | o | i o | o | @ | .
i} s s s | S o
°
1] © © ° ©
© © 7 o 7 7 o 7 o 7 o o 7
5 Lo
8 2 x4 . 2 x 2
c
© o
o i o 4 o ] o
S o1 ] P e IR = N =Y S Teoees. o ] S Feeeereeeenead] S oty
2 R RER o e o
< T — © T — © T — © T — © T —T © T I
02 05 1.0 02 05 1.0 02 05 1.0 02 05 1.0 02 05 1.0 02 05 1.0
1/K

When p >> n, each sample has no nearest neighbors, this is
known as the curse of dimensionality.

» The variance of KNN regression is very large
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Classification problems

Recall: Supervised learning with a qualitative or categorical
response. As common (if not more) than regression

» Medical diagnosis: Given the symptoms a patient shows,
predict which of 3 conditions they are attributed to

» Online banking: Determine whether a transaction is fraudulent
or not, on the basis of the IP address, client's history, etc.

» Web searching: Based on a user’s attributes and the string of
a web search, predict which link a person will click

» Online advertising: Predict whether a user will click on an ad
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Classification problems

Recall: In classification, the function f; we care about is
fo éIP’()[Y:y|)<1,)<2,...,)<p] (12)
To get a prediction, we use the Bayes Classifier:

y =argmaxPo[Y = y[ X1, Xo, ..., Xp] (13)
y
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Classification problems

Recall: In classification, the function f; we care about is
fo éIP’()[Y:y|)<1,)<2,...,)<p] (12)
To get a prediction, we use the Bayes Classifier:

y =argmaxPo[Y = y[ X1, Xo, ..., Xp] (13)
y

Example: Suppose Y € {0,1}. We could use linear model:
IP)[Y: 1|X] :/80+/81X1+"‘+Bpxp (14)
Problems:

» This would allow probabilities < 0 and > 1

» Difficult to extend to more than 2 categories
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Logistic regression

An idea:
Let's apply a function to the result to keep it within [0, 1]
1
-1 _
g (2)= 1+ exp(—2)
i.e.
PlY = 1X] = !
1+ eXp(—(ﬁo + 60X+ + Bpo))
STATS 202: Data Mining and Analysis L. Tran
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Logistic regression

An idea:
Let's apply a function to the result to keep it within [0, 1]
gD = (15)
1+ exp(—2z)
i.e.
1
P[Y = 1|X] = (16)

1+ eXP(—(Bo + 68X+ + Bpo))
This is equivalent to modeling the log-odds, e.g.

| [IP’[Y = 1/X]

P[YZO|XJ = Bo+ L1 X1+ -+ BpXp (17)

n.b. exp(3;) is commonly referred to as the odds-ratio for X;
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Fitting a logistic regression

Let (x1,y1), (X2, ¥2), ---s (Xn, ¥n) be our training data.
In the linear model

PlY = 1|X]
log |=——< | = X1+ X 1
We don't actually observe the left side
» We observe Y € {0,1}, not probabilities

» This prevents us from using e.g. least squares to estimate our
parameters
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Fitting a logistic regression

Solution:
Let’s try to maximize the probability of our training data
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Fitting a logistic regression

Solution:
Let’s try to maximize the probability of our training data

£@) = [[P(Y =ylX=x) (19)
i=1

= e -p) (20)
i=1

where p; = g }(Bo + Bix1,i + -+ + BpXp.i)
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Fitting a logistic regression

Solution:
Let’s try to maximize the probability of our training data

£@) = [[P(Y =ylX=x) (19)
i=1

= e -p) (20)
i=1

where p; = g7 }(Bo + Bix1,i + -+ + BpXp.i)
» We look for # such that £(60) is maximized
» aka Maximum likelihood estimation (MLE)

» Has no closed form solution, so solved with numerical
methods (e.g. Newton's method)
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Fitting a logistic regression

Note:
We typically deal with the log-likelihood:

00) = logL(0)

= Zy; log(pi) + (1 — y;)log(1 — p;)

= ZZH k) log(P(K|X = x;))

k=0 i=1

STATS 202: Data Mining and Analysis L. Tran
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Fitting a logistic regression

Given our loss function:

0ue) = Zy, log(pi) + (1 — yi) log(1 — pi) (24)
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Fitting a logistic regression

Given our loss function:

0ue) = Zy, log(pi) + (1 — yi) log(1 — pi) (24)
Where

" s 2) =)

Z = X3 (26)
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Fitting a logistic regression

Given our loss function:

0ue) = Zy, log(pi) + (1 — yi) log(1 — pi) (24)

Where

1
= 25
PT T exp(-2) 2)

Zi = X3 (26)
We can deriving the gradient using the chain rule:

oue)  oue) op 0z
28~ op 0z " 9B (27)
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Logistic regression in R

Estimating uncertainty

» We can estimate the Standard Error of each coefficient (e.g.
using Fisher's information)

Iv(8) = —Eg[V2¢(B)] (28)

» The z-statistic (for logistic regression) is the equivalent of the
t-statistic (in linear regression):

A

z= b 29
SE(B;) 29

» The p-values are test of the null hypothesis 3; = 0
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Logistic regression in R

Example fit

> glm.fit=glm(Direction~Lagl+Lag2+Lag3+Lagé4+Lag5+Volume,
data=Smarket ,family=binomial)
> summary (glm.fit)

Call:
glm(formula = Direction ~ Lagl + Lag2 + Lag3 + Lag4 + Lagh
+ Volume, family = binomial, data = Smarket)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.45 -1.20 1.07 1.15 1.33

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.12600 0.24074 -0.562 0.60
Lagil -0.07307 0.05017 -1.46 0.15
Lag2 -0.04230 0.05009 -0.84 0.40
Lag3 0.01109 0.04994 0.22 0.82
Lag4 0.00936 0.04997 0.19 0.85
Lagb 0.01031 0.04951 0.21 0.83
Volume 0.13544 0.15836 0.86 0.39
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Example: Predicting credit card default

Predictors:
» student: 1 if student, 0 otherwise
> balance: credit card balance
P> income: person's income
In this dataset there is confounding, but little collinearity

» Students tend to have higher balances. So, balance is
explained by student, but not very well.

» People with a high balance are more likely to default.

» Among people with a given balance, students are less likely to
default.
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Example: Predicting credit card default

Predictors:
» student: 1 if student, 0 otherwise
» balance: credit card balance

P> income: person's income
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Example: Predicting credit card default

Logistic regression using only balance:

Coefficient  Std. error Z-statistic =~ P-value

Intercept —10.6513 0.3612 —29.5 <0.0001

balance 0.0055 0.0002 249 <0.0001
Logistic regression using only student:

Coefficient  Std. error Z-statistic =~ P-value

Intercept —3.5041 0.0707 —49.55 <0.0001

student [Yes] 0.4049 0.1150 3.52 0.0004

Logistic regression using all 3 predictors:

Coefficient  Std. error Z-statistic =~ P-value

Intercept —10.8690 0.4923 —22.08 <0.0001

balance 0.0057 0.0002 24.74 <0.0001

income 0.0030 0.0082 0.37 0.7115

student [Yes] —0.6468 0.2362 —2.74 0.0062
STATS 202: Data Mining and Analysis L. Tran
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Some issues with logistic regression

» The coefficients become unstable when there is collinearity
» This also affects the convergence of the fitting algorithm

» When the classes are well separated, the coefficients become
unstable

» This is always the case when p > n—1.
» Sometimes may not converge

» e.g. Needs more iterations
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Linear Discriminant Analysis

A linear model (like logistic regression). Unlike logistic regression:

» Does not become unstable when classes are well separated
> With small n and X approximately normal, is stable

» Popular when we have > 2 classes
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Linear Discriminant Analysis

A linear model (like logistic regression). Unlike logistic regression:

» Does not become unstable when classes are well separated
> With small n and X approximately normal, is stable
» Popular when we have > 2 classes

High level idea:
Model distribution of X given Y, and apply Bayes' theorem,

ie.
kak(x)

P(Y =kl X=%x)= ————"—
( | )Z/K:mf/(X)

» A common assumption is fi(x) is Gaussian
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Linear Discriminant Analysis

Example: K = 2 with Gaussian f;(x) and common ¢?

Py = kX =x) = —"kfk(x) (31)

Z/Kmf/( )
_ Wkr EXp( P( _Hk)z) (32)
i Wlme P (502 (x — 11)?)
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Linear Discriminant Analysis

Example: K = 2 with Gaussian f;(x) and common ¢?

Py = kX =x) = —"kfk(x) (31)

Iy mifi(x)
B Wkﬁ exp (— 50 (x — 11)?) (32)
>t T ey &P (— (X = 11)?)

Taking the log and rearranging gives:

Lk
(Sk(X) = X- ? — ﬁ + |Og(7Tk) (33)
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Linear Discriminant Analysis

Example: K = 2 with Gaussian f;(x) and common ¢?

Py = kX =x) = —"kfk(x) (31)

Iy mifi(x)
B Wkﬁ exp (— 50 (x — 11)?) (32)
>t T ey &P (— (X = 11)?)

Taking the log and rearranging gives:

Lk
(Sk(X) = X- ? — ﬁ + |Og(7Tk) (33)

If w1 = 7, our Bayes Classifier is:

2x(py — p2) > 45 — 5 (34)
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Linear Discriminant Analysis

Example of LDA
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Quadratic Discriminant Analysis

Similar to LDA

» Assumes Gaussian fi(x)
» Unlike LDA:

> Assumes each class has its own covariance matrix (X)
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Quadratic Discriminant Analysis

Similar to LDA

» Assumes Gaussian fi(x)
» Unlike LDA:

> Assumes each class has its own covariance matrix (X)

This results in a quadratic discriminant function:

1 _ 1
(5k(X) = —§(X — uk)TZkl(X — ,LLk) — 5 Iog ’Ek| + |Og7['k
1 _ _ 1 _ 1
= —EXTEI( 1x +XT2k L — EMZE,( Yy — 5 log | Xk| + log mk

(35)

STATS 202: Data Mining and Analysis L. Tran 46/49



Quadratic Discriminant Analysis

Similar to LDA

» Assumes Gaussian fi(x)
» Unlike LDA:

> Assumes each class has its own covariance matrix (X)

This results in a quadratic discriminant function:

1 _ 1
5k(X) = —§(X — uk)TZkl(X — ,uk) — 5 Iog ’Ek| + |Og7['k
1 _ _ 1 _ 1
= —EXTEI( 1x +XT2k L — EMZE,( Yy — 5 log | Xk| + log mk

(35)
This results in more parameters to fit:

> LDA: Kp parameters
» QDA: Kp(p + 1)/2 parameters
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Linear Discriminant Analysis vs Logistic regression

Assume a two-class setting with one predictor

Linear Discriminant Analysis:

log ["1(’())(} = @+ ax (36)

» ¢y and ¢; computed using fig, fi1, and 62

Logistic regression:

| [ P[Y = 1[x]

T-PY =1 HX]] = Bo + Pr1x (37)

» 5o and (1 estimated using MLE
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Comparison of classification methods

SCENARIO 1 SCENARIO 2 SCENARIO 3
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