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Announcements

» Two versions of Piazza appeared (the Spring version was shut
down)

» Use the Summer Session
P> Reference textbook for statistics
» Grinstead and Snell
HWT1 due this Friday.
Section on R/Python programming for DS this Friday.

Please enroll in Piazza/Gradescope.

vV v v VY

Accommodation requests.
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https://piazza.com/stanford/summer2023/stats202
https://math.dartmouth.edu/~prob/prob/prob.pdf

Outline

P Linear regression

» Coefficients, standard errors, hypothesis testing
» Multiple linear regression

» Variable selection, stepwise models, categorical variables,
P> Regression issues

» Interactions, non-linear relationships, error correlation,
heteroskedasticity
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Recall-
» Given some input features
X1, X2, .., Xp
> Y € R is the output
: » (X, Y) have a joint distribution
T+ & & % & % P Bluelineis the regression fit: an
estimate f,, of the line we want

520 2
L L L

10

Example of a linear
model fit to some data. fo =Eo[Y|X1, X2,.... X,] (1)
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Linear regression

In linear regression, we assume

yi = Po+PBixi+e  (2)
& % N(0,0%) (3)
Elylx] = pBo+ fix (4)

0 15 20 25
L L L L

5
L

Example of a linear
model fit to some data.
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Linear regression

Example of a linear
model fit to some data.
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In linear regression, we assume

yi = Po+PBixi+e  (2)
& % N(0,0%) (3)
Ely|x] = fo+ Bix (4)

We can get coefficient estimates
(BO,BAl) by minimizing some objective
function, e.g. the residual sum of
squares (RSS):

RSS = ) (vi— ) (5)
i=1

= > (vi— (Bo+ Brx))? (6)
i—1
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Linear regression

Some calculus shows that the minimizers of the RSS are:

N N V)
S 5 N o )

Bo = y-PBix (8)

where y and X are the sample averages of y; and x;,
respectively.
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Accuracy of coefficient estimates

» Different samples will result in
different estimates (BAO, 31)

» How do we evaluate the
certainty of (BAO,BA;L)?

True function fy and
estimate f,.
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Accuracy of coefficient estimates

» Different samples will result in
different estimates (BAO, 31)

» How do we evaluate the
certainty of (BAO,BA;L)?

Y e » Recall: When estimating mean
- - | o of variable X, we can

e 88 " compute its standard error

e e b e SE(fin) as

. 2

True function fy and ~ (or

. - SE =14/ — 9
estimate f,. (fin) n (9)

» We can take a similar approach
with our coefficients
P> i.e. estimate standard errors
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Estimating SE(§))

1 X2
n Z?:l(xi - X_n)2
g

doia(xi = x)?

SE(51)? =

(10)

True function fy and

2 _
estimates . where 0% = Var (¢).

> Assumes ¢; are uncorrelated
with common variance o2
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Estimating SE(§))

» While, we don't know oq, we
can estimate it

SE(fo)* = [1+

—2

>oina (Xi = %n)?

6’2

O = S =P

(11)

where 6 = /RSS/(n — 2).

True function fy and
estimates f,.
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Estimating SE(§))

g >
5
&
o 1 2 2 a0 1 2

True function fy and
estimates f,.
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» While, we don't know oq, we
can estimate it

A 1 X2

E 2_s2|\-4, 0~

SE(h)" =2 [ﬁz,-"_l(x,-—x-n)z
6’2

= o

where 6 = /RSS/(n — 2).

95% Cl's can then be calculated:

(11)

Bo + tun-SE(B) (12)
Bi £ tap-SE(B1) (13)

L. Tran
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Hypothesis testing

When we want to evaluate some kind of relationship, we can test it
statistically, e.g.

Ho : There is no relationship between X and Y (14)
H, : There is a relationship between X and Y (15)
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Hypothesis testing

When we want to evaluate some kind of relationship, we can test it
statistically, e.g.

Ho : There is no relationship between X and Y (14)
H, : There is a relationship between X and Y (15)

Note: Hypothesis tests are typically set up such that H, is the
outcome that we care about

» e.g. In non-inferiority tests, Hy is typically specified such that
there is a deficiency in the treatment being evaluated.
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Hypothesis testing

For linear models, we typically test e.g.

Ho : B1=0 (16)
Ha . ﬁl#o (17)

» If 81 =0, then our model simplifies to E[y|x] = By, meaning
X is not associated to Y.
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Hypothesis testing

For linear models, we typically test e.g.

Hy : B1=0 (16)
Ha . ﬁl#o (17)

» If 81 =0, then our model simplifies to E[y|x] = By, meaning
X is not associated to Y.

» To be sure #; # 0, we want f31 to be far from 0 and for
SE(f1)
» Will typically calculate a statistic to help us evaluate this

> e.g. A t-statistic
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Hypothesis testing

For linear models, we typically test e.g.

Ho @ /1=0 (18)
H, : 1 #0 (19)
Our test statistic R
R (20)
SE(b1)
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Hypothesis testing

For linear models, we typically test e.g.

Ho : f1=0 (18)
Hy : B1#0 (19)
Our test statistic R
R (20)
SE(p1)

> Follows a t-distribution with n — 2 degrees of freedom.
» Can be used to calculate a p-value

> i.e. the probability of observing our statistic (or a larger one)
under the null hypothesis

» |f the probability is low enough, then we reject Hy
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Hypothesis testing

An applied example

Coefficient ~ Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

TABLE 3.1. For the Advertising data, coefficients of the least squares model
for the regression of number of units sold on TV advertising budget. An increase
of $1,000 in the TV advertising budget is associated with an increase in sales by
around 50 units (Recall that the sales variable is in thousands of units, and the
TV variable is in thousands of dollars).
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On interpreting the hypothesis test

1. If we reject the null hypothesis, can we assume there is a
linear relationship?
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On interpreting the hypothesis test

1. If we reject the null hypothesis, can we assume there is a
linear relationship?

» No. A quadratic relationship may be a better fit, for example.
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On interpreting the hypothesis test

1. If we reject the null hypothesis, can we assume there is a
linear relationship?

» No. A quadratic relationship may be a better fit, for example.

2. If we don't reject the null hypothesis, can we assume there is
no relationship between X and Y7
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On interpreting the hypothesis test

1. If we reject the null hypothesis, can we assume there is a
linear relationship?

» No. A quadratic relationship may be a better fit, for example.

2. If we don't reject the null hypothesis, can we assume there is
no relationship between X and Y7

» No. This test is only powerful against certain monotone
alternatives (with enough data). There could be more complex
non-linear relationships (or you could need more data).
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Multiple linear regression

Extension of linear regression to handle multiple predictors
In multiple linear regression, we assume

Y =00+ 01 X1+ B Xo+ -+ €
Eiil';c'] (0702)
E[Y|X] = Bo + 1 X1 + B2 Xo + - -

(21)
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Multiple linear regression

Extension of linear regression to handle multiple predictors
In multiple linear regression, we assume

Y =00+ 01 X1+ B Xo+ -+ €
e;%/\/(o,az)

E[Y|X] = fo + 81Xy + B2 Xo + - - -
(21)
In matrix notation:
E[Y|X] = X3 (22)
where
x (17X1aX27"'7XP) (23)

B = (Bo.Br.-nBp)  (24)
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Questions to consider

» |s at least one of the variables X; useful for predicting the
outcome Y?
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» |s at least one of the variables X; useful for predicting the
outcome Y?
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» How good is a linear model for these data?
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Questions to consider

» |s at least one of the variables X; useful for predicting the
outcome Y?

» Which subset of the predictors is most important?
» How good is a linear model for these data?

P> Given a set of predictor values, what is a likely value for Y,
and how accurate is this prediction?

STATS 202: Data Mining and Analysis L. Tran 16/40



Estimating 3

Our goal is the same: minimize the RSS

n

RSS = Z(y,- — )7,')2 (25)
i=1
= S i — (Bo+ Brxia + o+ Bpxip))? (26)
i=1
Can be show that RSS is miminized with:
B=(XTX)"'XTy (27)
where the vectors are now matrices, e.g.
1 X171 s X17p
X= |+ =+ - (28)
1 Xp1 -+ Xop

STATS 202: Data Mining and Analysis L. Tran 17/40



Estimating 3

Our goal is the same: minimize the RSS

n

RSS = Y (vi— ) (25)
i=1
= S i — (Bo+ Brxia + o+ Bpxip))? (26)
i=1
Can be show that RSS is miminized with:
B=(XTX)"'XTy (27)
where the vectors are now matrices, e.g.
1 X171 s X17p
X= |+ =+ - (28)
1 Xp1 -+ Xop

Note: only exists when X T X is invertible (requires n > p).
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Which variables are important?

Consider the hypothesis:

Ho : The last g predictors have no relation with Y. (29)
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Which variables are important?

Consider the hypothesis:

Ho : The last g predictors have no relation with Y. (29)
ie. Ho @ Bp_gt1 =Pp-qi2="-=0p=0 (30)
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Which variables are important?

Consider the hypothesis:

Ho : The last g predictors have no relation with Y. (29)
ie. Ho @ Bp_gt1 =Pp-qi2="-=0p=0 (30)

Let RSSy be the residual sum of squares for the model which
excludes these variables. The F-statistic is defined by:

_ (RSSo— RSS)/q

F= RSS/(n—p—1)

(31)

Under the null hypothesis, statistic follows F-distribution.
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Which variables are important?

Consider the hypothesis:

Ho : The last g predictors have no relation with Y. (29)
ie. Ho @ Bp_gt1 =Pp-qi2="-=0p=0 (30)

Let RSSy be the residual sum of squares for the model which
excludes these variables. The F-statistic is defined by:

_ (RSSo— RSS)/q

F= 31
RSS/(n—p—1) (31)
Under the null hypothesis, statistic follows F-distribution.
Example: If g = p, testing if 3; =0V j.
RSSo = (vi—7¥) (32)

i=1
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Which variables are important?

Some notes:

» The t-statistic associated to the j predictor is (equivalent
to) the square root of the F-statistic for the null hypothesis
which sets only 3; = 0.
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Which variables are important?

Some notes:

» The t-statistic associated to the j predictor is (equivalent
to) the square root of the F-statistic for the null hypothesis
which sets only 3; = 0.

» A low p-value for the j™ predictor indicates that the predictor
is important.
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Which variables are important?

Some notes:

» The t-statistic associated to the j predictor is (equivalent
to) the square root of the F-statistic for the null hypothesis
which sets only 3; = 0.

» A low p-value for the j™ predictor indicates that the predictor
is important.

» Warning: If there are many predictors, even under the null
hypothesis, some of the t-tests will have low p-values.
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Which variables are important?

Some notes:

» The t-statistic associated to the j predictor is (equivalent
to) the square root of the F-statistic for the null hypothesis
which sets only 3; = 0.

» A low p-value for the j™ predictor indicates that the predictor
is important.

» Warning: If there are many predictors, even under the null
hypothesis, some of the t-tests will have low p-values. Ways
of accounting for this include e.g.

» controlling the family-wise error rate (FWER)

» controlling the false discovery rate (FDR)
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Which variables are important?

Example of multiple linear regression output (in R):

Residuals:
Min 1Q Median 3Q Max
-15.594 -2.730 -0.518 1.777 26.199

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 *xx
crim -1.080e-01 3.286e-02 -3.287 0.001087 x*x
zn 4.642e-02 1.373e-02 3.382 0.000778 **xx*
indus 2.056e-02 6.150e-02 0.334 0.738288
chas 2.687e+00 8.616e-01 3.118 0.001925 =*x*
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 **x*
rm 3.810e+00 4.179e-01 9.116 < 2e-16 **xx*
age 6.922e-04 1.321e-02 0.052 0.958229
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 **x*
rad 3.060e-01 6.635e-02 4.613 5.07e-06 **x*
tax -1.233e-02 3.761e-03 -3.280 0.001112 x*x*
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 *x*x*
black 9.312e-03 2.686e-03 3.467 0.000573 *xx*
1lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 **x*
Signif. codes: 0 “x*x’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-Squared: 0.7406, Adjusted R-squared: 0.7338
F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16
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How many variables are important?

In selecting a subset of the predictors, we have 2P choices.

One way to simplify the choice is to define a range of models with
an increasing number of variables, then select the best. AKA

stepwise regression.

The approach:

1. Construct a sequence of p models with increasing number of
variables.

2. Select the best model among them.
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How many variables are important?

Constructing the p models:

» Forward selection: Starting from a null model, include
variables one at a time, minimizing the RSS at each step.
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» Backward selection: Starting from the full model, eliminate
variables one at a time, choosing the one with the largest
p-value at each step.
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» Forward selection: Starting from a null model, include
variables one at a time, minimizing the RSS at each step.

» Backward selection: Starting from the full model, eliminate
variables one at a time, choosing the one with the largest
p-value at each step.

» Mixed selection: Starting from a null model, include variables
one at a time, minimizing the RSS at each step. If the p-value
for some variable goes beyond a threshold, eliminate that
variable.
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How many variables are important?

Constructing the p models:

» Forward selection: Starting from a null model, include
variables one at a time, minimizing the RSS at each step.

» Backward selection: Starting from the full model, eliminate
variables one at a time, choosing the one with the largest
p-value at each step.

» Mixed selection: Starting from a null model, include variables
one at a time, minimizing the RSS at each step. If the p-value
for some variable goes beyond a threshold, eliminate that
variable.

Choosing a model in the range produced is a form of tuning. Will
cover this more in Chapter 6.
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How many variables are important?

Example output of a stepwise selection method:
> ()
> {tv}
» {tv, newspaper}
» {tv, newspaper, radio}
» {tv, newspaper, radio, facebook}
» {tv, newspaper, radio, facebook, twitter}
6 choices are better than 2° = 64.

We can use different objectives to decide on optimal model, e.g.
cross-validation, AIC, BIC, etc.
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How good is the fit?

To assess fit, we focus on the residuals.
» The RSS always decreases as we add more variables.

» The residual standard error (RSE) corrects this:

1
RSE = | — —{RSS (33)

» Visualizing the residuals can reveal phenomena that are not
accounted for by the model; eg. synergies or interactions:
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How good is the predictions?

We can get confidence intervals for our predictions:

> predict (lm.fit,data.frame(lstat=(c(5,10,15))),
interval="confidence")
fit lwr upr
1 29.80 29.01 30.60
2 25.05 24.47 25.63
3 20.30 19.73 20.87

The confidence intervals reflect the uncertainty from /.
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How good is the predictions?

We can get confidence intervals for our predictions:

> predict (lm.fit,data.frame(lstat=(c(5,10,15))),
interval="confidence")
fit lwr upr
1 29.80 29.01 30.60
2 25.05 24.47 25.63
3 20.30 19.73 20.87

The confidence intervals reflect the uncertainty from /.

> predict (lm.fit,data.frame(lstat=(c(5,10,15))),
interval="prediction")
fit lwr upr
1 29.80 17.566 42.04
2 25.05 12.828 37.28
3 20.30 8.078 32.53

Prediction intervals reflect uncertainty from both /3 and ¢ (i.e. the

irreducible error).
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Dealing with categorical /qualitative predictors

Example: credit dataset

Additionally:
4 qualitative variables
» gender: male, female
> student: yes, no
P> status: married, single,
divorced
» ethnicity: African
American, Asian, Caucasian

Example of a linear model fit to
some data.
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Dealing with categorical /qualitative predictors

For each qualitative predictor, e.g. ethnicity:
» Choose a baseline category, e.g. African American

» Can be the group with the highest frequency
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Dealing with categorical /qualitative predictors

For each qualitative predictor, e.g. ethnicity:
» Choose a baseline category, e.g. African American
» Can be the group with the highest frequency

» For every other category, define a new predictor (aka dummy
indicator):

»  Xasian is 1 if the person is Asian and 0 otherwise.

»  Xcaucasian is 1 if the person is Caucasian and 0 otherwise.
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Dealing with categorical /qualitative predictors

For each qualitative predictor, e.g. ethnicity:
» Choose a baseline category, e.g. African American
» Can be the group with the highest frequency

» For every other category, define a new predictor (aka dummy
indicator):

»  Xasian is 1 if the person is Asian and 0 otherwise.
»  Xcaucasian is 1 if the person is Caucasian and 0 otherwise.
» The model will be:
Y = BO + B1X1 +--+ /BAsianXAsian + ﬁCaucasianXCaucasian + €
(34)

Basian is the relative effect on balance for being Asian compared to
the baseline category.
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Dealing with categorical /qualitative predictors

Y = BO + /81X1 +-F 5AsianXAsian + ﬁCaucasianXCaucasian +e€ (35)

» The model fit and predictions are independent of the choice of
the baseline category.

» Other ways to encode qualitative predictors produce the same
fit f,, but the coefficients have different interpretations.

» Hypothesis tests derived from these dummy indicator are
affected by the choice.
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Dealing with categorical /qualitative predictors

Y = BO + /81X1 +-F 5AsianXAsian + ﬁCaucasianXCaucasian +e€ (35)

» The model fit and predictions are independent of the choice of
the baseline category.

» Other ways to encode qualitative predictors produce the same
fit f,, but the coefficients have different interpretations.

» Hypothesis tests derived from these dummy indicator are
affected by the choice.

» Solution: To check whether ethnicity is important, use an
F-test for the hypothesis Basian = Bcaucasian = 0.
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So far, we have:

» Defined Multiple Linear Regression

» Discussed how to estimate model parameters

» Discussed how to test the importance of variables

» Described one approach to choose a subset of variables
» Explained how to code dummy indicators

What are some potential issues?
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Potential issues in linear regression

Interactions between predictors

Non-linear relationships

Correlation of error terms

Non-constant variance of error (heteroskedasticity)
Outliers

High leverage points

Collinearity

vV v v v V. vV VY

Mis-specification
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Interactions between predictors

Linear regression has an additive assumption, e.g.:

sales = By + 1 -tv + B> - radio + ¢ (36)

e.g. An increase of $ 100 dollars in TV ads correlates to a fixed
increase in sales, independent of how much you spend on radio
ads.

If we visualize the residuals, it is clear that this is false:
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Interactions between predictors

One way to deal with this:

» Include multiplicative variables (aka interaction variables) in
the model

sales = o + 1 - tv + B2 - radio + [33 - (tv x radio) + € (37)

» Makes the effect of TV ads dependent on the radio ads (and
vice versa)

» The interaction variable is high when both tv and radio are
high
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Interactions between predictors

Two ways of including interaction variables (in R):
> Create a new variable that is the product of the two

» Specify the interaction in the model formula

> 1m.fit=1m(Sales~.+Income:Advertising+Price:Age,data=Carseats)
> summary (1m.fit)

Call:
ln(formula = Sales ~ . + Income:Advertising + Price:Age, data =
Carseats)

Residuals :
Min 1Q Median 3Q Max
-2.921 -0.7560 0.018 0.6756 3.341

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 6.575665 1.008747 6.52 2.2e-10 *x*
CompPrice 0.092937 0.004118 22.57 < 2e-16 **x
Income 0.010894 0.002604 4.18 3.6e-05 **x
Advertising 0.070246 0.022609 3.11 0.00203 =**
Population 0.000159 0.000368 0.43 0.66533
Price -0.100806  0.007440 -13.55 < 2e-16 *x*
ShelveLocGood 4.848676 0.152838 31.72 < 2e-16 **x*
ShelveLocMedium 1.953262 0.125768 15.53 < 2e-16 **x
Age -0.057947 0.015951 -3.63 0.00032 ***
Education -0.020852 0.019613 -1.06 0.28836
UrbanYes 0.140160 0.112402 1.256 0.21317
USYes -0.1575567  0.148923 -1.06 0.29073
Income:Advertising 0.000751 0.000278 2.70 0.00729 *x
Price:Age 0.000107 0.000133 0.80 0.42381
Signif. codes: O ’***x’ 0.001 ’*%’ 0.01 ’*’ 0.06 ’.” 0.1 *> ’ 1
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Non-linear relationships

Scatterplots between X and Y may
reveal non-linear relationships
» Solution: Include polynomial
terms in the model

MPG =py + 1 - horsepower

+ B2 - horsepower?

P + B3 - horsepower® + ... + ¢
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ 38)
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Non-linear relationships

In 2 or 3 dimensions, this is easy to visualize. What do we do when
we have too many predictors?
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Non-linear relationships

In 2 or 3 dimensions, this is easy to visualize. What do we do when
we have too many predictors?

Plot the residuals against the response and look for a

pattern:
Residual Plot for Linear Fit Residual Plot for Quadratic Fit
<
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Correlation of error terms

We assumed that the errors for each sample are
independent:

yi=f(x;))+ €€ iid (0,02) (39)
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Correlation of error terms

We assumed that the errors for each sample are
independent:

yi=f(x;)+e € iid (0,02) (39)
When it doesn't hold:

» Invalidates any assertions about Standard Errors, confidence
intervals, and hypothesis tests

Example: Suppose that by accident, we double the data (i.e. we
use each sample twice). Then, the standard errors would be
artificially smaller by a factor of v/2.
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Correlation of error terms

Examples of when this happens:

» Time series: Each sample corresponds to a different point in
time. The errors for samples that are close in time are
correlated.

» Spatial data: Each sample corresponds to a different location
in space.

» Clustered data: Study on predicting height from weight at
birth. Suppose some of the subjects in the study are in the
same family, their shared environment could make them
deviate from f(x) in similar ways.
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Correlation of error terms

Simulations of time series with increasing correlations on ¢;.

p=0.0

Observation

STATS 202: Data Mining and Analysis L. Tran 38/40



Non-constant variance of error (heteroskedasticity)

The variance of the error depends on the input value.

To diagnose this, we can plot residuals vs. fitted values:

Response Y Response log(Y)

-5 5 10
Il Il Il
°
Fo
S
-04 -02 00 02 04
| | |
2
] f 5 w

Residuals
Residuals

©
) 3
= <7 671
437
®
T T T T T 9 T T T T T T
10 15 20 25 30 24 26 28 3.0 3.2 3.4
Fitted values Fitted values

STATS 202: Data Mining and Analysis L. Tran 39/40



Non-constant variance of error (heteroskedasticity)

The variance of the error depends on the input value.

To diagnose this, we can plot residuals vs. fitted values:

Response Y Response log(Y)
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Solution: If the trend in variance is relatively simple, we can
transform the response using a logarithm, for example.
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