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Announcements

▶ Two versions of Piazza appeared (the Spring version was shut
down)

▶ Use the Summer Session

▶ Reference textbook for statistics

▶ Grinstead and Snell

▶ HW1 due this Friday.

▶ Section on R/Python programming for DS this Friday.

▶ Please enroll in Piazza/Gradescope.

▶ Accommodation requests.
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https://piazza.com/stanford/summer2023/stats202
https://math.dartmouth.edu/~prob/prob/prob.pdf


Outline

▶ Linear regression

▶ Coefficients, standard errors, hypothesis testing

▶ Multiple linear regression

▶ Variable selection, stepwise models, categorical variables,

▶ Regression issues

▶ Interactions, non-linear relationships, error correlation,
heteroskedasticity
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Example of a linear
model fit to some data.

Recall:
▶ Given some input features

X1,X2, ...,Xp

▶ Y ∈ R is the output
▶ (X ,Y ) have a joint distribution
▶ Blue line is the regression fit: an

estimate f̂n of the line we want

f0 = E0[Y |X1,X2, ...,Xp] (1)
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Linear regression
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Example of a linear
model fit to some data.

In linear regression, we assume

yi = β0 + β1xi + ϵi (2)

ϵi
iid∼ N (0, σ2) (3)

E[y |x ] = β0 + β1x (4)

We can get coefficient estimates
(β̂0, β̂1) by minimizing some objective
function, e.g. the residual sum of
squares (RSS):

RSS =
n∑

i=1

(yi − ŷi )
2 (5)

=
n∑

i=1

(yi − (β̂0 + β̂1xi ))
2 (6)
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Linear regression

Some calculus shows that the minimizers of the RSS are:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
(7)

β̂0 = ȳ − β̂1x̄ (8)

where ȳ and x̄ are the sample averages of yi and xi ,
respectively.
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Accuracy of coefficient estimates
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True function f0 and
estimate f̂n.

▶ Different samples will result in
different estimates (β̂0, β̂1)

▶ How do we evaluate the
certainty of (β̂0, β̂1)?

▶ Recall: When estimating mean
µ0 of variable X , we can
compute its standard error
SE(µ̂n) as

SE(µ̂n) =

√
σ2
0

n
(9)

▶ We can take a similar approach
with our coefficients
▶ i.e. estimate standard errors
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Estimating SE(β̂j)
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True function f0 and
estimates f̂n.

SE(β̂0)
2 = σ2

[
1

n
+

x̄2∑n
i=1(xi − x̄n)2

]
SE(β̂1)

2 =
σ2∑n

i=1(xi − x̄)2

(10)

where σ2 = Var (ϵ).
▶ Assumes ϵi are uncorrelated

with common variance σ2
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Estimating SE(β̂j)
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▶ While, we don’t know σ0, we
can estimate it

ŜE(β̂0)
2 = σ̂2

[
1

n
+

x̄2∑n
i=1(xi − x̄n)2

]
ŜE(β̂1)

2 =
σ̂2∑n

i=1(xi − x̄)2

(11)

where σ̂ =
√

RSS/(n − 2).

95% CI’s can then be calculated:

β̂0 ± tα/2 · ŜE(β̂0) (12)

β̂1 ± tα/2 · ŜE(β̂1) (13)
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Hypothesis testing

When we want to evaluate some kind of relationship, we can test it
statistically, e.g.

H0 : There is no relationship between X and Y (14)

Ha : There is a relationship between X and Y (15)

Note: Hypothesis tests are typically set up such that Ha is the
outcome that we care about

▶ e.g. In non-inferiority tests, H0 is typically specified such that
there is a deficiency in the treatment being evaluated.
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Hypothesis testing

For linear models, we typically test e.g.

H0 : β1 = 0 (16)

Ha : β1 ̸= 0 (17)

▶ If β1 = 0, then our model simplifies to E[y |x ] = β0, meaning
X is not associated to Y .

▶ To be sure β1 ̸= 0, we want β̂1 to be far from 0 and for
ŜE(β̂1)

▶ Will typically calculate a statistic to help us evaluate this

▶ e.g. A t-statistic
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Hypothesis testing

For linear models, we typically test e.g.

H0 : β1 = 0 (18)

Ha : β1 ̸= 0 (19)

Our test statistic

t =
β̂1 − 0

ŜE (β̂1)
(20)

▶ Follows a t-distribution with n − 2 degrees of freedom.

▶ Can be used to calculate a p-value

▶ i.e. the probability of observing our statistic (or a larger one)
under the null hypothesis

▶ If the probability is low enough, then we reject H0
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ŜE (β̂1)
(20)

▶ Follows a t-distribution with n − 2 degrees of freedom.

▶ Can be used to calculate a p-value

▶ i.e. the probability of observing our statistic (or a larger one)
under the null hypothesis

▶ If the probability is low enough, then we reject H0

STATS 202: Data Mining and Analysis L. Tran 12/40



Hypothesis testing

An applied example
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On interpreting the hypothesis test

1. If we reject the null hypothesis, can we assume there is a
linear relationship?

▶ No. A quadratic relationship may be a better fit, for example.

2. If we don’t reject the null hypothesis, can we assume there is
no relationship between X and Y ?

▶ No. This test is only powerful against certain monotone
alternatives (with enough data). There could be more complex
non-linear relationships (or you could need more data).
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Multiple linear regression

Extension of linear regression to handle multiple predictors

X1

X2

Y

In multiple linear regression, we assume

Y = β0 + β1X1 + β2X2 + · · ·+ ϵ

ϵi
iid∼ N (0, σ2)

E[Y |X] = β0 + β1X1 + β2X2 + · · ·
(21)

In matrix notation:

E[Y |X] = Xβ (22)

where

X = (1,X1,X2, ...,Xp) (23)

β = (β0, β1, ..., βp)
⊤ (24)
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Questions to consider

▶ Is at least one of the variables Xj useful for predicting the
outcome Y ?

▶ Which subset of the predictors is most important?

▶ How good is a linear model for these data?

▶ Given a set of predictor values, what is a likely value for Y ,
and how accurate is this prediction?
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Estimating β

Our goal is the same: minimize the RSS

RSS =
n∑

i=1

(yi − ŷi )
2 (25)

=
n∑

i=1

(yi − (β̂0 + β̂1xi ,1 + ...+ β̂pxi ,p))
2 (26)

Can be show that RSS is miminized with:

β = (X⊤X)−1X⊤y (27)

where the vectors are now matrices, e.g.

X =

1 X1,1 · · · X1,p
...

...
. . .

...
1 Xn,1 · · · Xn,p

 (28)

Note: only exists when X⊤X is invertible (requires n ≥ p).
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Which variables are important?

Consider the hypothesis:

H0 : The last q predictors have no relation with Y . (29)

i.e. H0 : βp−q+1 = βp−q+2 = · · · = βp = 0 (30)

Let RSS0 be the residual sum of squares for the model which
excludes these variables. The F -statistic is defined by:

F =
(RSS0 − RSS)/q

RSS/(n − p − 1)
(31)

Under the null hypothesis, statistic follows F -distribution.
Example: If q = p, testing if βj = 0 ∀ j .

RSS0 =
n∑

i=1

(yi − ȳ)2 (32)
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Which variables are important?

Some notes:

▶ The t-statistic associated to the j th predictor is (equivalent
to) the square root of the F -statistic for the null hypothesis
which sets only βj = 0.

▶ A low p-value for the j th predictor indicates that the predictor
is important.

▶ Warning: If there are many predictors, even under the null
hypothesis, some of the t-tests will have low p-values. Ways
of accounting for this include e.g.

▶ controlling the family-wise error rate (FWER)

▶ controlling the false discovery rate (FDR)
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Which variables are important?

Example of multiple linear regression output (in R):
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How many variables are important?

In selecting a subset of the predictors, we have 2p choices.

One way to simplify the choice is to define a range of models with
an increasing number of variables, then select the best. AKA
stepwise regression.

The approach:

1. Construct a sequence of p models with increasing number of
variables.

2. Select the best model among them.
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How many variables are important?

Constructing the p models:

▶ Forward selection: Starting from a null model, include
variables one at a time, minimizing the RSS at each step.

▶ Backward selection: Starting from the full model, eliminate
variables one at a time, choosing the one with the largest
p-value at each step.

▶ Mixed selection: Starting from a null model, include variables
one at a time, minimizing the RSS at each step. If the p-value
for some variable goes beyond a threshold, eliminate that
variable.

Choosing a model in the range produced is a form of tuning. Will
cover this more in Chapter 6.
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How many variables are important?

Example output of a stepwise selection method:

▶ {}

▶ {tv}

▶ {tv, newspaper}

▶ {tv, newspaper, radio}

▶ {tv, newspaper, radio, facebook}

▶ {tv, newspaper, radio, facebook, twitter}

6 choices are better than 26 = 64.

We can use different objectives to decide on optimal model, e.g.
cross-validation, AIC, BIC, etc.
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How good is the fit?

To assess fit, we focus on the residuals.

▶ The RSS always decreases as we add more variables.

▶ The residual standard error (RSE) corrects this:

RSE =

√
1

n − p − 1
RSS (33)

▶ Visualizing the residuals can reveal phenomena that are not
accounted for by the model; eg. synergies or interactions:

Sales

Radio

TV
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How good is the predictions?

We can get confidence intervals for our predictions:

The confidence intervals reflect the uncertainty from β̂.

Prediction intervals reflect uncertainty from both β̂ and ϵ (i.e. the
irreducible error).
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Dealing with categorical/qualitative predictors

Example: credit dataset

Balance
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Example of a linear model fit to
some data.

Additionally:
4 qualitative variables
▶ gender: male, female
▶ student: yes, no
▶ status: married, single,

divorced
▶ ethnicity: African

American, Asian, Caucasian
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Dealing with categorical/qualitative predictors

For each qualitative predictor, e.g. ethnicity:

▶ Choose a baseline category, e.g. African American

▶ Can be the group with the highest frequency

▶ For every other category, define a new predictor (aka dummy
indicator):

▶ XAsian is 1 if the person is Asian and 0 otherwise.

▶ XCaucasian is 1 if the person is Caucasian and 0 otherwise.

▶ The model will be:

Y = β0 + β1X1 + · · ·+ βAsianXAsian + βCaucasianXCaucasian + ϵ
(34)

βAsian is the relative effect on balance for being Asian compared to
the baseline category.
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Dealing with categorical/qualitative predictors

Y = β0 + β1X1 + · · ·+ βAsianXAsian + βCaucasianXCaucasian + ϵ (35)

▶ The model fit and predictions are independent of the choice of
the baseline category.

▶ Other ways to encode qualitative predictors produce the same
fit f̂n, but the coefficients have different interpretations.

▶ Hypothesis tests derived from these dummy indicator are
affected by the choice.

▶ Solution: To check whether ethnicity is important, use an
F -test for the hypothesis βAsian = βCaucasian = 0.
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Recap

So far, we have:

▶ Defined Multiple Linear Regression

▶ Discussed how to estimate model parameters

▶ Discussed how to test the importance of variables

▶ Described one approach to choose a subset of variables

▶ Explained how to code dummy indicators

What are some potential issues?
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Potential issues in linear regression

▶ Interactions between predictors

▶ Non-linear relationships

▶ Correlation of error terms

▶ Non-constant variance of error (heteroskedasticity)

▶ Outliers

▶ High leverage points

▶ Collinearity

▶ Mis-specification

STATS 202: Data Mining and Analysis L. Tran 30/40



Interactions between predictors

Linear regression has an additive assumption, e.g.:

sales = β0 + β1 · tv+ β2 · radio+ ϵ (36)

e.g. An increase of $ 100 dollars in TV ads correlates to a fixed
increase in sales, independent of how much you spend on radio
ads.

If we visualize the residuals, it is clear that this is false:

Sales

Radio

TV
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Interactions between predictors

One way to deal with this:

▶ Include multiplicative variables (aka interaction variables) in
the model

sales = β0 + β1 · tv + β2 · radio + β3 · (tv × radio) + ϵ (37)

▶ Makes the effect of TV ads dependent on the radio ads (and
vice versa)

▶ The interaction variable is high when both tv and radio are
high
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Interactions between predictors

Two ways of including interaction variables (in R):

▶ Create a new variable that is the product of the two

▶ Specify the interaction in the model formula
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Non-linear relationships
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Linear
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Scatterplots between X and Y may
reveal non-linear relationships
▶ Solution: Include polynomial

terms in the model

MPG =β0 + β1 · horsepower
+ β2 · horsepower2

+ β3 · horsepower3 + ...+ ϵ

(38)
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Non-linear relationships

In 2 or 3 dimensions, this is easy to visualize. What do we do when
we have too many predictors?

Plot the residuals against the response and look for a
pattern:
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Correlation of error terms

We assumed that the errors for each sample are
independent:

yi = f (xi ) + ϵi : ϵi
iid∼ N (0, σ2) (39)

When it doesn’t hold:

▶ Invalidates any assertions about Standard Errors, confidence
intervals, and hypothesis tests

Example: Suppose that by accident, we double the data (i.e. we
use each sample twice). Then, the standard errors would be
artificially smaller by a factor of

√
2.
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Correlation of error terms

Examples of when this happens:

▶ Time series: Each sample corresponds to a different point in
time. The errors for samples that are close in time are
correlated.

▶ Spatial data: Each sample corresponds to a different location
in space.

▶ Clustered data: Study on predicting height from weight at
birth. Suppose some of the subjects in the study are in the
same family, their shared environment could make them
deviate from f (x) in similar ways.
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Correlation of error terms

Simulations of time series with increasing correlations on ϵi .
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Non-constant variance of error (heteroskedasticity)

The variance of the error depends on the input value.

To diagnose this, we can plot residuals vs. fitted values:
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Solution: If the trend in variance is relatively simple, we can
transform the response using a logarithm, for example.
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