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Announcements

▶ Any issues with Piazza/Gradescope?
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Outline

▶ Classification

▶ K-nearest neighbors

▶ Naive Bayes

▶ Clustering

▶ K-means

▶ Hierarchical clustering
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Bayes classifier

▶ f0 gives us a probability of the observation belonging to each
class.

▶ To select a class, we can just pick the element in
f0 = [p1, p2, ..., pK ] that’s the largest

▶ Called the Bayes Classifier

▶ As a classifier, produces the lowest error rate

Bayes error rate

1− E0

[
max
y

P0[Y = y |X1,X2, ...,Xp]

]
(1)

Analogous to the irreducible error described previously
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Bayes classifier

Example: Classifying in 2 classes with 2 features.

The Bayes error rate is 0.1304.
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Bayes classifier

Note: C(x) = argmax
y

f0(y) may seem easier to estimate

▶ Can still be hard, depending on the distribution f0, e.g.
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K-nearest neighbors

How do we estimate Bayes classifier C(x)?

▶ Could just vote based on the K nearest neighbors (where K is
some positive integer)
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The KNN approach, using K = 3.
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K-nearest neighbors

Using KNN (i.e. f̂ knnn ) as a classifier C(x), we can estimate Bayes
boundary f ∗0 .

▶ Despite simplicity, f̂ knnn can be surprisingly close
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The KNN (K = 10) and Bayes decision boundaries.
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K-nearest neighbors

Mathematically, we can represent KNN as

K-nearest neighbors

P(Y = j |X = x0) =
1

K

∑
i∈N0

I(yi = j) (2)

We can apply Bayes rule to the resulting probabilities to get our
classifier.
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K-nearest neighbors

Some details to consider in our KNN implementation:

▶ Are all our Xi ’s on the same scale?

▶ Typically, will standardize all features to be mean 0 and
variance 1.

▶ How do we measure distance?

▶ Typically, the Euclidean distance is used, e.g.

d(i) = ||x(i) − x0|| (3)

▶ Ties are typically broken randomly

▶ What size K do we use?

▶ Estimated with e.g. test set
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K-nearest neighbors

Higher values of K will result in smoother decision boundaries

▶ You’re trading off higher variance for higher bias
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KNN: K=1 KNN: K=100

Two KNN boundary estimates (K = 1 and K = 100).
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K-nearest neighbors

More flexibility (i.e. lower K ) will result in over-fitting

▶ Similar to regression setting
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Naive bayes

Another simple estimator is Naive Bayes.

By Bayes Theorem, we have

P0(Y |X1,X2) =
P0(Y )P0(X1,X2|Y )

P0(X1,X2)
(4)

=
P0(X1,X2,Y )

P0(X1,X2)
(5)

We only care about the numerator

▶ It’s a function of Y
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Naive bayes

Typically, we have

P0(X1,X2,Y ) = P0(Y ) · P0(X1|Y ) · P0(X2|X1,Y ) (6)

However, we “naively” assume independence such that

P0(X2|X1,Y ) ≈ P0(X2|Y ) (7)

Consequently, we have

P0(Y |X1,X2) ∝ P0(Y )P0(X1,X2|Y ) (8)

≈ P0(Y )
2∏

i=1

P0(Xi |Y ) (9)
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Naive bayes

P0(Y |X1,X2) ≈ 1

Z
P0(Y )

2∏
i=1

P0(Xi |Y )

We can estimate P0 empirically
▶ e.g. kernel density estimation
▶ Could also use parametric models (e.g. Gaussian distribution)
▶ Question: What if the feature is categorical?

Remark: we don’t need Z if we’re just classifying

▶ Just take the class with the max value, e.g.

Example naive bayes classifier

ŷn = C(X1,X2) = argmax
y∈{Orange,Blue}

P0(y)
2∏

i=1

P0(Xi |y)(10)
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Clustering

Sometimes, we do not have the classes as our output Y .
But we still want to assign each observation to a group.

▶ This is referred to as Clustering

▶ Falls into unsupervised learning (i.e. no clearly defined
outcome of interest)

▶ Our goal is to find homogeneous subgroups among the
observations

X1

X
2
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Clustering

There are many types of clustering algorithms.

We will cover three:

▶ K-means clustering

▶ Hierarchical clustering

▶ Expectation maximization algorithm

▶ Beyond scope of our class
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K-means clustering

Clusters all observations into K clusters

▶ K must be specified a-priori

▶ Algorithm then assigns every point to one of the K clusters

▶ Object is to minimize the within-cluster variation, i.e.

K-means clustering

min
C1,C2,...,Ck

K∑
ℓ=1

W (Cℓ) : W (Cℓ) =
1

|Cℓ|
∑
i ,j∈Cℓ

D2(xi , xj)

D(x, y) measures the distance between x and y (typically the

Euclidean distance, i.e.
√∑p

j=1(xj − yj)2).
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K-means clustering
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Results from applying K-means clustering with different K ’s.
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K-means clustering

Algorithm steps

K-means clustering

1. Assign each observation (randomly) to one of the K
clusters.

2. Iterate the 2 following steps until cluster assignments
stop changing:

a Find the centroid of each of the K clusters

x̄ℓ =
1

|Cℓ|
∑
i∈Cℓ

xi (11)

b Reassign each sample to the nearest centroid (using
D2(x, y))
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K-means clustering

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

Visualization of k-means at different steps.
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K-means clustering

Some properties of K-means

▶ The algorithm always converges to a local minimum of

min
C1,C2,...,Ck


K∑
ℓ=1

1

|Cℓ|
∑
i ,j∈Cℓ

D2(xi , xj)

 (12)

▶ The algorithm is random

▶ Each initialization can result in a different minimum

▶ Can run with with multiple initializations and select lowest
minimum
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K-means clustering

320.9 235.8 235.8

235.8 235.8 310.9

Example of running K-means 6 different times (K = 3).
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Hierarchical clustering

Most algorithms for hierarchical clustering are agglomerative.
e.g.
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Hierarchical clustering

▶ The algorithm results in a dendogram

▶ Hierarchical in the sense that lower clusters are nested within
higher clusters
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Hierarchical clustering

▶ The number of clusters does not need to be specified a-priori

▶ Clusters created by cutting dendogram at a vertical point

▶ Note: Not all segmentation problems are nested clusters.

▶ e.g. Market segmentation for consumers of 2 genders from 3
different nationalities.

▶ Wierd to divide into 2 groups, and then to further divide 1 in
half
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Hierarchical clustering

In each iteration, we fuse the 2 clusters closest to each other.

▶ While we can use the Euclidean distance, what if a cluster has
multiple observations?

Linkage defines the dissimilarity between two clusters

Four primary types:

1. Complete

2. Average

3. Single

4. Centroid
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Hierarchical clustering

Complete linkage:
▶ The distance between 2 clusters is

the maximum distance between any
pair of samples, one in each cluster.
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Hierarchical clustering

Average linkage:
▶ The distance between 2 clusters is

the average of all pairwise
distances.
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Hierarchical clustering

Single linkage:
▶ The distance between 2 clusters is

the minimum distance between any
pair of samples, one in each cluster.

▶ Suffers from chaining phenomenon
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Hierarchical clustering

Centroid linkage:
▶ The distance between 2 clusters is

the distance between each centroid.
▶ Suffers from inversions
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Hierarchical clustering

Average Linkage Complete Linkage Single Linkage

Examples of hierarchical clustering using different linkages.
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Clustering

Clustering is riddled with questions and choices

▶ Is clustering appropriate? i.e. Could a sample belong to more
than one cluster?

▶ Mixture models, soft clustering, topic models.

▶ How many clusters are appropriate?

▶ Choose subjectively — depends on the inference sought.
▶ Some formal methods based on gap statistics, mixture models,

etc.

▶ Are the clusters robust?

▶ Run the clustering on different random subsets of the data. Is
the structure preserved?

▶ Try different clustering algorithms. Are the conclusions
consistent?

▶ Most important: temper your conclusions.
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Clustering

Questions on distance

▶ Should we scale the variables before doing the clustering.

▶ Variables with larger variance have a larger effect on the
Euclidean distance between two samples.

▶ Does Euclidean distance capture dissimilarity between
samples?
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Correlation distance

5 10 15 20

0
5

1
0

1
5

2
0

Variable Index

Observation 1

Observation 2

Observation 3

1

2

3

Example: Suppose that we want to cluster customers at a store
for market segmentation.

▶ Samples are customers

▶ Each variable corresponds to a specific product and measures
the number of items bought by the customer during a year.

STATS 202: Data Mining and Analysis L. Tran 35/37



Correlation distance
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Example: Suppose that we want to cluster customers at a store
for market segmentation.
▶ We could use Euclidean distance

▶ Would cluster all customers who purchase few things (orange
and purple)

▶ What if: we want to cluster customers who purchase similar
things?
▶ Correlation distance may be a more appropriate measure
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