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Announcements

▶ Kaggle predictions due Sunday night.

▶ Final project write-up is due Wednesday.

▶ Reference your Kaggle leaderboard name on Page 1

▶ Final exam is next Saturday

▶ Time: Saturday August 19 @ 7:00 PM -10:00 PM

▶ Location: Skilling Auditorium

▶ 8 questions (lowest question dropped)

▶ Practice exam to be released tonight (solutions next week)

▶ Accommodation requests should already be made

▶ Course evaluation is up (on Canvas).
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Outline

▶ Course review
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Unsupervised learning

▶ In unsupervised learning, all the variables are on equal
standing, no such thing as an input and response.

▶ Clustering is typically applied
▶ Hierarchical clustering (single, complete, or average linkage).

▶ K -means clustering.

▶ Expectation maximization (using Gaussian mixtures).
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Hierarchical clustering

Average Linkage Complete Linkage Single Linkage

▶ Agglomerative algorithm produces
a dendrogram.

▶ At each step we join the two
clusters that are “closest”:
▶ Complete: distance between

clusters is maximal distance
between any pair of points.

▶ Single: distance between clusters
is minimal distance.

▶ Average: distance between
clusters is the average distance.

▶ Height of a branching point =
distance between clusters joined.
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K -means clustering

▶ The number of clusters is fixed at K .

▶ Goal is to minimize the average distance of a point to the
average of its cluster.

▶ The algorithm starts from some assignment, and is guaranteed
to decrease this average distance.

▶ This find a local minimum, not necessarily a global minimum,
so we typically repeat the algorithm from many different
random starting points.
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Supervised learning

We’re interested in a response variable Y associated to each vector
of predictors X.

Regression: f0 = E0[Y |X1,X2, ...,Xp]

▶ A scalar value, i.e. f0 ∈ R

▶ f̂n therefore gives us estimates of y

Classification: f0 = P0[Y = y |X1,X2, ...,Xp]

▶ A vectored value, i.e.
f0 = [p1, p2, ..., pK ] : pj ∈ [0, 1],

∑
K pj = 1

▶ n.b. In a binary setting this simplies to a scalar, i.e.
f0 = p1 : p1 = P0[Y = 1|X1,X2, ...,Xp] ∈ [0, 1]

▶ f̂n therefore gives us predictions of each class

▶ Can take the arg max, giving us Bayes Classifier
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Bias variance decomposition

Let x0 be a fixed point, y0 = f0(x0) + ϵ, and f̂n be an estimate of f0
from (xi , yi ) : i = 1, 2, ..., n.

The MSE at x0 can be decomposed as

MSE (x0) = E0[y0 − f̂n(x0)]
2 (1)

= Var(f̂n(x0)) + Bias(f̂n(x0))
2 + Var(ϵ0) (2)
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Loss functions

Regression:

▶ MSE ((yi − ŷi )
2)

▶ AIC, BIC, R2, Adjusted R2

Classification:

▶ Cross-entropy ((yi log(p̂i ))

▶ 0-1 loss (I(yi ̸= ŷi ))

▶ Confusion matrix

▶ Receiver operating characteristic curve (& AUC)

▶ Gini index (
∑|T |

m=1 qm
∑K

k=1 p̂mk(1− p̂mk))

Misc:

▶ Hinge loss (max(0, 1− yf ))
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How do we estimate the test error?

▶ Our main technique is cross-validation.

▶ Different approaches:
1. Validation set: Split the data in two parts, train the model on

one subset, and compute the test error on the other.

2. k-fold: Split the data into k subsets. Average the test errors
computed using each subset as a validation set.

3. LOOCV: k-fold cross validation with k = n.

▶ No approach is superior to all others.

▶ What are the main differences? How do the bias and variance
of the test error estimates compare? Which methods depend
on the random seed?

STATS 202: Data Mining and Analysis L. Tran 10/28



The Bootstrap

▶ Main idea: If we have enough data, the empirical distribution
is similar to the actual distribution of the data.

▶ Resampling with replacement allows us to obtain
pseudo-independent datasets.

▶ They can be used to:
1. Approximate the standard error of a parameter (say, β in linear

regression), which is just the standard deviation of the
estimate when we repeat the procedure with many
independent training sets.

2. Bagging: By averaging the predictions ŷ made with many
independent data sets, we eliminate the variance of the
predictor.

n.b. Can instead use the jackknife as a linear approximation.
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Features / predictors / covariates

▶ (Non-linear) feature transformations

▶ Standardization

▶ Kernels

▶ Neural networks

▶ True, empirical, estimated distributions
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Linear models

▶ Coefficients, standard errors, and hypothesis testing

▶ Interactions between predictors

▶ Non-linear relationships

▶ Correlation of error terms

▶ Non-constant variance of error (heteroskedasticity)

▶ Outliers

▶ High leverage points

▶ Collinearity

▶ Mis-specification
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Regression methods

▶ Multiple linear regression

▶ Stepwise selection methods

▶ Ridge regression, Lasso, and elastic net

▶ Non-linear methods:
▶ Polynomial regression

▶ Cubic splines

▶ Smoothing splines

▶ Local regression

▶ GAMs: Combining the above methods with multiple predictors

▶ Nearest neighbors regression

▶ Decision trees, Bagging, Random Forests, Boosting, and
Neural Networks

▶ Neural Networks

STATS 202: Data Mining and Analysis L. Tran 14/28



Classification methods

▶ Nearest neighbors classification

▶ Naive Bayes

▶ Logistic regression

▶ LDA and QDA

▶ Stepwise selection methods

▶ Support vector classifier and support vector machines

▶ Decision trees, Bagging, Random Forests, Boosting

▶ Neural Networks
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Cubic splines

Very popular, since they give very smooth predictions over X .

▶ Define a set of knots ξ1 < ξ2 < · · · < ξK .

▶ We want the function Y = f (X ) to:

1. Be a cubic polynomial between every pair of knots ξi , ξi+1.

2. Be continuous at each knot.

3. Have continuous first and second derivatives at each knot.

Fact: Given constraints, we need K + 3 basis functions:

f (X ) = β0+β1X +β2X
2+β3X

3+β4h(X , ξ1)+ · · ·+βK+3h(X , ξK )
(3)

where,

h(x , ξ) =

{
(x − ξ)3 if x > ξ

0 otherwise
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Smoothing splines

Our goal is to find the function f which minimizes

n∑
i=1

(yi − f (xi ))
2 + λ

∫
f ′′(x)2dx

▶ The RSS of the model.

▶ A penalty for the roughness of the function.

For regularization, we have that λ ∈ (0,∞)

▶ When λ = 0, f can be any function that interpolates the data.

▶ When λ =∞, f will be the simple least squares fit
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Kernel smoothing

Idea: Why not just use the subset of observations closest to the
point we’re predicting at?
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▶ Observations averaged locally for predictions.

▶ Can use different weighting kernels, e.g.

Kλ(x0, x) = D

(
|x − x0|
hλ(x0)

)
(4)
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Generalized additive models

The extension of basis functions to multiple predictors (while
maintaining additivity) , e.g.

Linear model

wage = β0 + β1year+ β2age+ β3education+ ϵ (5)

Additive model

wage = β0 + f1(year) + f2(age) + f3(education) + ϵ (6)

The functions f1, . . . , fp can be polynomials, natural splines,
smoothing splines, local regressions, etc.
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Support Vector Machines

max
β0,β,ϵ

M (7)

subject to

▶ ∥β∥ = 1

▶ yi (β0 + x⊤i β) ≥ M(1− ϵi ) ∀ i = 1, . . . , n

▶ ϵi ≥ 0 ∀ i = 1, . . . , n and
∑n

i=1 ϵi ≤ C
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n.b. Can use kernels to capture non-linearities.
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Decision Trees

Using a greedy approach:

▶ Start with a single region R1, and iterate:

▶ Select a region Rk , a predictor Xj , and a splitting point s, such
that splitting Rk with the criterion Xj < s produces the largest
decrease in RSS:

|T |∑
m=1

∑
xi∈Rm

(yi − ȳRm)
2

▶ Redefine the regions with this additional split.

▶ Terminate when there are 5 observations or fewer in each
region.

▶ This grows the tree from the root towards the leaves.

STATS 202: Data Mining and Analysis L. Tran 21/28



Random Forest
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Boosting

Boosting uses a set of weak learners (e.g. decision trees) to create
a strong one.

The general algorithm is:

1. Fit an initial f̂ 0n to the data and compute residuals ri .

2. For b = 1, ...,B:

▶ Fit a weak leaner f̂ bn on the residuals.

▶ With learning rate λb, update prediction to:

f̂n ← f̂n + λb f̂
b
n . (8)

▶ Update the residuals

ri ← ri − λb f̂
b
n (xi ). (9)3. Output prediction, e.g.

f̂n(x) = f̂ 0n +
B∑

b=1

λb f̂
b
n (x). (10)
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Neural networks

Neural networks are simply a generalization of the logistic
regression case, e.g. for

P(Y = 1|X) = σ(σ(XW1)W2) (11)

Our loss is

L(yi , f (Xi )) = −yi log(pi )− (1− yi ) log(1− pi ), where(12)

pi =
1

1 + exp(−Z2,i )
(13)

Z2,i = hiW2 (14)

hi =
1

1 + exp(−Z1,i )
(15)

Z1,i = XW1 (16)
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Feature representation

How do the feature transformations get learned?

Original representation of curves Hidden layer representation of curves

Well demonstrated by Chris Olah’s blog.
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https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/


Model generalizations

Neural networks can be applied over multiple tasks (i.e. multi-task
learning), e.g.

Kendall et al. 2017’s multi-task model
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https://arxiv.org/abs/1705.07115


Survival analysis

Analyzing right censored survival time

▶ Our observed time is Y = min(T ,C )

▶ We have an associated indicator δ = I(T ≤ C )

Two commonly used estimators

▶ Kaplan Meier Estimator: estimates the survival function for a
small number of groups

▶ Can use log-rank test to confirm statistical significance.

▶ Cox-proportional hazards: assumes proportionality in the
hazard functions.

▶ Similar to (pooled) logistic regression (breaking follow-up time
into individual time ranges)
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Self testing questions

For each of the regression and classification methods:

1. What are we trying to optimize?

2. What does the fitting algorithm consist of, roughly?

3. What are the tuning parameters, if any?

4. How is the method related to other methods, mathematically
and in terms of bias, variance?

5. How does rescaling or transforming the variables affect the
method?

6. In what situations does this method work well? What are its
limitations?
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