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Announcements

» HW4 due in 2 days.
> Question 4 is a bonus.
» Final predictions due in 4 days (write-up is due in 1 week).
» reference your Kaggle leaderboard name on Page 1
» Final exam is next Saturday
» Time: Saturdays August 19 7:00 PM - 10:00 PM
» Location: Skilling Auditorium
» Practice exam released this Friday (solutions next week)
» Accommodation requests should already be made

» Course evaluation is up (on Canvas).
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Outline

Time to event

Censored data

>

>

» Kaplan Meier Curves

» Proportional hazards models
>

Time varying covariates
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Time to event

Typically used for non-negative random variables T > 0, e.g.

» Time until person dies
» Time until student graduates
» Number of clicks until customer buys something

» Number of sexual encounters before catching AIDS
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Time to event

Requirements for time to event:
1. The intiating event (i.e. time 0)
2. The terminating event (i.e. outcome of interest)

3. A unit of “time”
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Time to event

What to do with our random variable T
1. Estimate the probabilty density function (pdf) f(t)
Estimate the culmulative distribution function (cdf) F(t)

Estimate the survival function S(t) =1 — F(t)

el

Estimate the hazard function h(t) = %

Another way of expressing the hazard function

P(t<T<t+A|T >t
W)= tim PESTSITAIT 2 0)
A:—0 A

n.b. We can also estimate the cumulative hazard
A(t) = —log S(t), or equivalently S(t) = exp(—A(t))
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Time to event

Example: Applying MLE in a parametric model, e.g. the Weibull
distribution. .
L=]]f) (1)
i=1

T =

FEEE
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Time to event

Alternative: Estimate a summary statistic, e.g. Mean survival time
(aka Life Expectancy)

E[T] :/OOO S(t)
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Time to event

Alternative: Estimate a summary statistic, e.g. Mean survival time
(aka Life Expectancy)

E[T] :/OOO S(t)

This can be generalized!
BTIT=d= [ ()
t

n.b. This implies that we can estimate the expectation by first
estimating the survival function.
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Censored data

Problem: we can’t always wait to observe the terminating event
(e.g. humans live a long time)
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Censored data

Problem: we can’t always wait to observe the terminating event
(e.g. humans live a long time)

Solution: incorporate an indicator that the terminating event was
observed (which assumes right censoring).
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Censored data

Problem: we can’t always wait to observe the terminating event
(e.g. humans live a long time)

Solution: incorporate an indicator that the terminating event was
observed (which assumes right censoring).

Formally, we define C > 0 to be our censoring time (analogous to
our event time)

» Our observed time then becomes Y = min(T, C)

» \We have an associated indicator § =I(T < C)
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Censored data

Our updated likelihood now has to account for the censoring, i.e.
let g(c) and Q(C) be the density and survival functions for C.
Then

> If a person is censored, their likelihood is S(y)q(y)
» If a person is not censored, their likelihood is (y)Q(y)

Our likelihood is therefore

L = H[f yi) QU™ IS (i) gy~
= H[f )R aly) ]

X Hf(y S(Yl '7Hh)/1 /
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Censored data

Question: rather than dealing with the survival function, can |
just simplify the problem and apply (straight-forward) MLE?
Examples:

» Discarding the censored values

» Treating the censored values as uncensored (i.e set T =Y).
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Censored data

Question: rather than dealing with the survival function, can |
just simplify the problem and apply (straight-forward) MLE?
Examples:

» Discarding the censored values
» Treating the censored values as uncensored (i.e set T =Y).

Answer: No! These will result in biased estimates!
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Censored data

A quick simulation:
» T1,..., Tp ~ Exp(A =1/20)
> G,...,Cy ~ Exp(A =1/30)
> Two estimators:
> fiin = ﬁ S, Yid

~ 1 n
> fion = ;Zizl Yi
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Censored data

A quick simulation:

Discard censored observations. Treat censored observations as uncensored.
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Kaplan Meier Estimator

If there is no censoring, estimating the survival function is
straight-forward, i.e.
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Kaplan Meier Estimator

If there is no censoring, estimating the survival function is
straight-forward, i.e.

With censoring, we have pairs of outcomes
(}/1, (51)7 ()/27 52)7 ceey (Ym 5n)

» We can form an estimator assuming independent censoring.
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Kaplan Meier Estimator

Our setup (for K observed events)
» Order our event times, i.e. di < dr < ... < dk

For a given dk, we have (by the law of total probability)

S(dx) = P(T > dk)
= P(T > di|T > de_1)P(T > di_1)
+ P(T > di| T < di1)P(T < di_1)
= P(T>dk’T>dk,1)P(T>dk,1)
= P(T > dk’T > dkfl)S(dkfl)
= P(T >de|T >dk1) X+ x P(T>do|T >d1)P(T > d)
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Kaplan Meier Estimator

Our setup (for K observed events)

» Count the number of events at each time, i.e.
gL < q2 <...< gk

» Count the number of “at risk” at each time, i.e.
n<mn<.<rg

We can estimate P(T > d;|T > dj_1) using our data, i.e.
PoT > T > dy) = T2 3)
j

n.b. This is the fraction of the risk set that survives past time
d;.
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Kaplan Meier Estimator

Putting this all together, we have

k
. r— q;
=1
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FIGURE 11.2. For the BrainCancer data, we display the Kaplan—Meier survival
eurve (solid curve), along with standard ervor bands (dashed curves)
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The log-rank test

Question: What if we have two groups? How do we compare their
survival curves?

Recall: For linear models, we can perform a hypothesis test

via A
_ Bim (5)

\ Var(ﬂAl)

t
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The log-rank test

Question: What if we have two groups? How do we compare their
survival curves?

Recall: For linear models, we can perform a hypothesis test

via R
o p1— /fo (5)
var(f1)
We can apply the same concept here, i.e.
X —E[X
W = 7[ ] (6)
var(X)
e.g. if g1k, nk are the number of events and at risk for group 1 (at
time k), then
I . r
w, = WA g - kg, 7
var(qik) Ik
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The log-rank test

For the log-rank test we apply this across all time points k, i.e. let
X = Zle g1k given us

W - k(9 — Elawd) ®
ZkK:1 var(qi)

We compare this statistic to a standard normal distribution to
calculate the p-value.
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Example

Question: Do winners of the Oscar live longer?

An approach:
» Create a data set of actors’ lifespans.
» Divide them into whether they've won an oscar.

» Fit KM Curves to each group and test using the log-rank test.
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Example

Question: Do winners of the Oscar live longer?

An approach:

» Create a data set of actors’ lifespans.

» Divide them into whether they've won an oscar.

» Fit KM Curves to each group and test using the log-rank test.
THIS IS INCORRECT!
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Cox-proportional hazards

Many times we'll have more than 1 covariate that we'd like to
regress our outcome on.

Our solution is to assume

p
h(tlxi) = ho(t)exp | > xif; 9)
=1

The Cox-proportional hazards model is described as
“semi” -parametric since ho(t) is unspecified.
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Cox-proportional hazards

Assume wlog that we have univariate x € {0,1}. Then

h(t|x; =0) = ho(t)exp(0)
h(tlxi=1) = ho(t)exp(B;)

So that the hazard ratio is Z%iizzég = ho(tz,:z(f)(ﬂj) = exp (B))

n.b. The baseline hazard ho(t) is for the covariate profile
x =(0,...,0)
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Cox-proportional hazards

Question 1: Given that ho(t) is unspecified, how do we go about
estimating the (3;'s?

Answer: Apply the same ordering trick that was used in the KM
curves, i.e. order the event times and calculate the
probabilities

ho(yi) exp (20 x5

(10)
Zi’:y,-/ >yi ho()/i) exp (ZJP:l Xi/jﬁj)
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Cox-proportional hazards

ho(yi) exp (Z}’:l x,,-/aj)
2ty >y; Mo(yi) exp (ijil Xi/fﬂj)

(11)

» The probability of an observation failing at each time y; is
ratio of time-specific hazard over total hazard.

» The ratio of hazards cancels out hg(t), meaning we don't
have to worry about it in estimating our (3;'s.

» The product of these probabilities over the uncensored
observations is called the partial likelihood.

» No closed form solution exists for the partial likelihood.
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Cox-proportional hazards

Question 2: Our partial likelihood only allows us to estimate our
B's. What about the survival or hazard function?

Answer: We can estimate the cumulative hazard via

I(y; < y)di
No(y) = (12)
RSN

The survival curve is then S(y) = exp(—No(y))-
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Time-varying covariates

Question 3: What if our features change over time?
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Time-varying covariates

Question 3: What if our features change over time?

Solution: We assign the time that corresponds to each of our
features for our outcome (along with the indicator of failure).

» The partial likelihood still works out the same!

> Now it's calculated with our covariates specific to the time
periods we specify.

» This approach is very similar to “pooled” logistic regression.
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