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Announcements

▶ HW4 due in 2 days.

▶ Question 4 is a bonus.

▶ Final predictions due in 4 days (write-up is due in 1 week).

▶ reference your Kaggle leaderboard name on Page 1

▶ Final exam is next Saturday

▶ Time: Saturdays August 19 7:00 PM - 10:00 PM

▶ Location: Skilling Auditorium

▶ Practice exam released this Friday (solutions next week)

▶ Accommodation requests should already be made

▶ Course evaluation is up (on Canvas).
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Outline

▶ Time to event

▶ Censored data

▶ Kaplan Meier Curves

▶ Proportional hazards models

▶ Time varying covariates
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Time to event

Typically used for non-negative random variables T ≥ 0, e.g.

▶ Time until person dies

▶ Time until student graduates

▶ Number of clicks until customer buys something

▶ Number of sexual encounters before catching AIDS
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Time to event

Requirements for time to event:

1. The intiating event (i.e. time 0)

2. The terminating event (i.e. outcome of interest)

3. A unit of “time”
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Time to event

What to do with our random variable T

1. Estimate the probabilty density function (pdf) f (t)

2. Estimate the culmulative distribution function (cdf) F (t)

3. Estimate the survival function S(t) = 1− F (t)

4. Estimate the hazard function h(t) = f (t)
S(t)

Another way of expressing the hazard function

h(t) = lim
∆t→0

P(t ≤ T ≤ t +∆t |T ≥ t)

∆t

n.b. We can also estimate the cumulative hazard
Λ(t) = − log S(t), or equivalently S(t) = exp(−Λ(t))
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Time to event

Example: Applying MLE in a parametric model, e.g. the Weibull
distribution.

L =
n∏

i=1

f (ti ) (1)

0.00

0.05

0.10

0.15

0.20

0.0 2.5 5.0 7.5 10.0
Time

y

f(t)

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
Time

y

F(t)

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
Time

y

S(t)

0.0

0.4

0.8

1.2

0.0 2.5 5.0 7.5 10.0
Time

y

h(t)

STATS 202: Data Mining and Analysis L. Tran 7/27



Time to event

Alternative: Estimate a summary statistic, e.g. Mean survival time
(aka Life Expectancy)

E[T ] =

∫ ∞

0
S(t)

This can be generalized!

E[T |T ≥ t] =

∫ ∞

t
S(t)

n.b. This implies that we can estimate the expectation by first
estimating the survival function.
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Censored data

Problem: we can’t always wait to observe the terminating event
(e.g. humans live a long time)

Solution: incorporate an indicator that the terminating event was
observed (which assumes right censoring).

Formally, we define C ≥ 0 to be our censoring time (analogous to
our event time)

▶ Our observed time then becomes Y = min(T ,C )

▶ We have an associated indicator δ = I(T ≤ C )
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Censored data

Our updated likelihood now has to account for the censoring, i.e.
let q(c) and Q(C ) be the density and survival functions for C .
Then

▶ If a person is censored, their likelihood is S(y)q(y)

▶ If a person is not censored, their likelihood is f (y)Q(y)

Our likelihood is therefore

L =
n∏

i=1

[f (yi )Q(yi )]
δi [S(yi )q(yi )]

1−δi

=
n∏

i=1

[f (yi )
δiS(yi )

1−δi ][Q(yi )
δq(yi )

1−δi ]

∝
n∏

i=1

f (yi )
δiS(yi )

1−δi =
n∏

i=1

h(yi )
δiS(yi )
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Censored data

Question: rather than dealing with the survival function, can I
just simplify the problem and apply (straight-forward) MLE?
Examples:

▶ Discarding the censored values

▶ Treating the censored values as uncensored (i.e set T = Y).

Answer: No! These will result in biased estimates!
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Censored data

A quick simulation:

▶ T1, ...,Tn ∼ Exp(λ = 1/20)

▶ C1, ...,Cn ∼ Exp(λ = 1/30)

▶ Two estimators:

▶ µ̂1n = 1∑n
i=1 δi

∑n
i=1 Yiδi

▶ µ̂2n = 1
n

∑n
i=1 Yi
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Censored data

A quick simulation:
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Kaplan Meier Estimator

If there is no censoring, estimating the survival function is
straight-forward, i.e.

Ŝn(t) =
1

n

n∑
i=1

I(ti ≥ t) (2)

With censoring, we have pairs of outcomes
(y1, δ1), (y2, δ2), ..., (yn, δn).

▶ We can form an estimator assuming independent censoring.
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Kaplan Meier Estimator

Our setup (for K observed events)

▶ Order our event times, i.e. d1 < d2 < ... < dK

For a given dk , we have (by the law of total probability)

S(dk) = P(T > dk)

= P(T > dk |T > dk−1)P(T > dk−1)

+ P(T > dk |T ≤ dk−1)P(T ≤ dk−1)

= P(T > dk |T > dk−1)P(T > dk−1)

= P(T > dk |T > dk−1)S(dk−1)

= P(T > dk |T > dk−1)× · · · × P(T > d2|T > d1)P(T > d1)
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Kaplan Meier Estimator

Our setup (for K observed events)

▶ Count the number of events at each time, i.e.
q1 < q2 < ... < qK

▶ Count the number of “at risk” at each time, i.e.
r1 < r2 < ... < rK

We can estimate P(T > dj |T > dj−1) using our data, i.e.

P̂n(T > dj |T > dj−1) =
rj − qj

rj
(3)

n.b. This is the fraction of the risk set that survives past time
dj .
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Kaplan Meier Estimator

Putting this all together, we have

Ŝn(dk) =
k∏

j=1

rj − qj
rj

(4)
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The log-rank test

Question: What if we have two groups? How do we compare their
survival curves?

Recall: For linear models, we can perform a hypothesis test
via

t =
β̂1 − µ0√
var(β̂1)

(5)

We can apply the same concept here, i.e.

W =
X − E[X ]√

var(X )
(6)

e.g. if q1k , r1k are the number of events and at risk for group 1 (at
time k), then

Wk =
q1k − Ê[q1k ]√

var(q1k)
: Ê[q1k ] =

r1k
rk

qk (7)
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The log-rank test

For the log-rank test we apply this across all time points k, i.e. let
X =

∑K
k=1 q1k given us

W =

∑K
k=1(q1k − E[q1k ])√∑K

k=1 var(q1k)
(8)

We compare this statistic to a standard normal distribution to
calculate the p-value.

STATS 202: Data Mining and Analysis L. Tran 19/27



Example

Question: Do winners of the Oscar live longer?

An approach:

▶ Create a data set of actors’ lifespans.

▶ Divide them into whether they’ve won an oscar.

▶ Fit KM Curves to each group and test using the log-rank test.

THIS IS INCORRECT!

STATS 202: Data Mining and Analysis L. Tran 20/27



Example

Question: Do winners of the Oscar live longer?

An approach:

▶ Create a data set of actors’ lifespans.

▶ Divide them into whether they’ve won an oscar.

▶ Fit KM Curves to each group and test using the log-rank test.

THIS IS INCORRECT!

STATS 202: Data Mining and Analysis L. Tran 20/27



Cox-proportional hazards

Many times we’ll have more than 1 covariate that we’d like to
regress our outcome on.

Our solution is to assume

h(t|xi ) = h0(t) exp

 p∑
j=1

xijβj

 (9)

The Cox-proportional hazards model is described as
“semi”-parametric since h0(t) is unspecified.
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Cox-proportional hazards

Assume wlog that we have univariate x ∈ {0, 1}. Then

h(t|xi = 0) = h0(t) exp (0)

h(t|xi = 1) = h0(t) exp (βj)

So that the hazard ratio is h(t|xi=1)
h(t|xi=0) =

h0(t) exp(βj)
h0(t)

= exp (βj)

n.b. The baseline hazard h0(t) is for the covariate profile
x = (0, ..., 0)
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Cox-proportional hazards

Question 1: Given that h0(t) is unspecified, how do we go about
estimating the βj ’s?

Answer: Apply the same ordering trick that was used in the KM
curves, i.e. order the event times and calculate the
probabilities

h0(yi ) exp
(∑p

j=1 xijβj

)
∑

i ′:yi′≥yi
h0(yi ) exp

(∑p
j=1 xi ′jβj

) (10)
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Cox-proportional hazards

h0(yi ) exp
(∑p

j=1 xijβj

)
∑

i ′:yi′≥yi
h0(yi ) exp

(∑p
j=1 xi ′jβj

) (11)

▶ The probability of an observation failing at each time yi is
ratio of time-specific hazard over total hazard.

▶ The ratio of hazards cancels out h0(t), meaning we don’t
have to worry about it in estimating our βj ’s.

▶ The product of these probabilities over the uncensored
observations is called the partial likelihood.

▶ No closed form solution exists for the partial likelihood.
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Cox-proportional hazards

Question 2: Our partial likelihood only allows us to estimate our
β’s. What about the survival or hazard function?

Answer: We can estimate the cumulative hazard via

Λ0(y) =
n∑

i=1

I(yi < y)δi∑
i ′:yi′≥yi

exp
(∑p

j=1 xi ′jβj

) (12)

The survival curve is then S(y) = exp(−Λ0(y)).
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Time-varying covariates

Question 3: What if our features change over time?

Solution: We assign the time that corresponds to each of our
features for our outcome (along with the indicator of failure).

▶ The partial likelihood still works out the same!

▶ Now it’s calculated with our covariates specific to the time
periods we specify.

▶ This approach is very similar to “pooled” logistic regression.

STATS 202: Data Mining and Analysis L. Tran 26/27



Time-varying covariates

Question 3: What if our features change over time?

Solution: We assign the time that corresponds to each of our
features for our outcome (along with the indicator of failure).

▶ The partial likelihood still works out the same!

▶ Now it’s calculated with our covariates specific to the time
periods we specify.

▶ This approach is very similar to “pooled” logistic regression.

STATS 202: Data Mining and Analysis L. Tran 26/27



References

[1] ISL. Chapter 11

STATS 202: Data Mining and Analysis L. Tran 27/27


