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Announcements

▶ Homework 4 due this Friday.
▶ Final project predictions due this Sunday night.
▶ Final project writeup is due next Wednesday.

▶ Optional (will take max of Final project & Final exam).
▶ Final exam is a week from this Saturday

▶ Time: August 19 @ 7:00 P.M. - 10:00 P.M.

▶ Location: Skilling Auditorium

▶ Practice exam to be released Friday

▶ Accommodation requests should be made now

▶ No formal lectures next week
▶ Review this Friday
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Outline

▶ Introduction

▶ Logistic regression

▶ Back propagation

▶ Function approximation

▶ Feature extraction

▶ Model generalization

▶ Advanced topics
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Neural networks

Currently, the most popular algorithm amongst ML practitioners.

▶ Many times, used within the context of Artificial Intelligence.
▶ Simply a general function estimation algorithm.
▶ Though is often hyped up the media.

Gartner’s hype cycle for 2018.
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Neural networks

Lots of buzz words, but what do they mean?

Definitions:
▶ AI: human-like machines or programs.
▶ ML: Algorithms that learn from data.
▶ DL: A type of ML algorithm, using

neural networks (typically with many
layers).
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Neural networks

But: what exactly are neural networks?

Some potential answers

▶ A universal function approximator.

▶ A feature extractor.

▶ A model generalizer.
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Logistic regression

Recall: logistic regression is a linear model with a logit link
function, i.e.

P(Y = 1|X) = σ(β0 + β1X1 + ...+ βpXp) : σ(z) =
1

1 + exp(−z)
(1)

Let’s rephrase this by:

1. Using b to denote β0 (aka the bias)

2. Using W to denote (β0, ..., βp) (aka the weights)

3. Using matrix notation

P(Y = 1|X) = σ︸︷︷︸
non−linearity

(XW + b) (2)
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Logistic regression

When the function is non-linear, our prior option was to do feature
transformations, e.g.

▶ Expand predictor set (e.g. non-linear transformations,
interactions, etc.).

▶ Define a kernel (e.g. find a function f (·, ·) that is positive
definite).

Another option: build the non-linearity into the model
specification, e.g.

P(Y = 1|X) = σ(σ(XW1 + b1)W2 + b2) (3)

This is a neural network (with 1 hidden layer)!
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Hidden nodes

For logistic regression:

P(Y = 1|X) = σ(X W︸︷︷︸
p×1

+ b︸︷︷︸
1×1

) (4)

For neural networks:

P(Y = 1|X) = σ(σ(X W1︸︷︷︸
p×M

+ b1︸︷︷︸
1×M

) W2︸︷︷︸
M×1

+ b2︸︷︷︸
1×1

) (5)

M specifies how many hidden nodes we have

▶ Called ‘hidden’ since it’s not directly observed by us.

▶ Also referred to as ‘embeddings’.
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Hidden layers

We can iteratively apply our non-linear operations, e.g.

P(Y = 1|X) = σ(· · ·σ(σ(XW1 + b1)W2 + b2) · · ·WB + bB) (7)

Where B is the number of iterations (i.e. hidden layers).

Each activation (e.g. sigmoid) can approximate a local change

▶ B sigmoids =⇒ approximate at ≈ B points

n.b. Each layer needs the number of hidden nodes specified.
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Multinomial logistic regression

Our examples have been for binary outcomes so far.
Question: What about multinomial outcomes

▶ e.g. Which of digits 0 through 9 is this photo?

Recall: for logistic regression, we’re modeling

log

[
P(Y = 1|X)

1− P(Y = 1|X)

]
= β0 + β1X1 + . . .+ βpXp (8)

= XW (9)

where X is our n × p design matrix and W is our p × 1 parameter
vector.
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Multinomial logistic regression

For multinomial regression, let Y ∈ {1, . . . ,K}. We can
model

log

[
P(Y = 1|X)
P(Y = K |X)

]
= XW1 (10)

log

[
P(Y = 2|X)
P(Y = K |X)

]
= XW2 (11)

· · · = · · · (12)

log

[
P(Y = K − 1|X)
P(Y = K |X)

]
= XWK−1 (13)

where each Wk is a p × 1 parameter vector.

Exponentiating both sides and solving for P(Y = K |X) (using the
fact that the probabilities have to sum to 1) gives us

P(Y = K |X) = 1

1 +
∑K−1

k=1 eXWk
(14)
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Multinomial logistic regression

Equivalently, can represent the multinomial logistic model as

log P(Y = 1|X) = XW1 − log(Z ) (15)

log P(Y = 2|X) = XW2 − log(Z ) (16)

· · · = · · · (17)

log P(Y = K |X) = XWK − log(Z ) (18)

resulting in the following probabilities

P(Y = 1|X) =
exp(XW1)∑K
k=1 exp(XWk)

(19)

P(Y = 2|X) =
exp(XW2)∑K
k=1 exp(XWk)

(20)

· · · = · · · (21)

P(Y = K |X) =
exp(XWK)∑K
k=1 exp(XWk)

(22)
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Multinomial logistic regression

This leads us to the softmax function, i.e.

softmax(XW1, . . . ,XWK)k =
eXWk∑K
l=1 e

XWl
(23)

Or, more succintly, we have

softmax(XWK)k =
exp((XWK)k·)∑K
k=1 exp((XW

K)k·)
(24)

where the p × K matrix WK is simply the (concatenated) matrix
of W1, . . . ,WK.

This is what multiclass neural networks are modeling!
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The chain rule

Recall: In logistic regression we try to maximize the likelihood

▶ Equivalent to minimizing the cross-entropy

L(yi , f (Xi )) = −yi log(pi )− (1− yi ) log(1− pi ), where(25)

pi =
1

1 + exp(−Zi )
(26)

Zi = XiW (27)

Can apply the derivative chain rule to get our gradient, i.e.

∂L(yi , f (Xi ))

∂W
=

∂L(yi , f (Xi ))

∂pi
× ∂pi

∂Zi
× ∂Zi

∂W
(28)

Which gives us

∂L(yi , f (Xi ))

∂W
= Xi (yi − pi ) (29)
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Backpropagation

Neural networks are simply a generalization of the logistic
regression case, e.g. for

P(Y = 1|X) = σ(σ(XW1)W2) (30)

Our loss is

L(yi , f (Xi )) = −yi log(pi )− (1− yi ) log(1− pi ), where(31)

pi =
1

1 + exp(−Z2,i )
(32)

Z2,i = hiW2 (33)

hi =
1

1 + exp(−Z1,i )
(34)

Z1,i = XW1 (35)
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Backpropagation

Our loss is

L(yi , f (Xi )) = −yi log(pi )− (1− yi ) log(1− pi ), where(36)

pi =
1

1 + exp(−Z2,i )
(37)

Z2,i = hiW2 (38)

hi =
1

1 + exp(−Z1,i )
(39)

Z1,i = XW1 (40)

Applying the derivative chain rule:

∂L(yi , f (Xi ))

∂W2
=

∂L(yi , f (Xi ))

∂pi
× ∂pi

∂Z2,i
×

∂Z2,i

∂W2

∂L(yi , f (X))

∂W1
=

∂L(yi , f (X))

∂pi
× ∂pi

∂Z2,i
×

∂Z2,i

∂hi
× ∂hi

∂Z1,i
×

∂Z1,i

∂W1
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Gradient descent

Our gradient is estimated using our data, i.e.
(yi ,Xi ) : i = 1, 2, . . . , n.

We can estimate it using, e.g.
▶ Stochastic gradient descent: estimating our (full) gradient

using just one observation.

▶ Gradient descent: estimating our (full) gradient using all
observations.

▶ Mini-batch gradient descent: using a (random) subsample
of our observations.

Each will trade off between variance for the gradient and memory
size.

When done iteratively, we’ll typically specify a stopping point (e.g.
by using a dev set).
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Gradient descent

The use of non-linearities results in multiple minima, tendency to
overfit, and can be unstable.
Some considerations to make:

▶ Set initial weight values near zero.

▶ Over parameterize and regularize heavily.

▶ Standardize input features.

▶ Use a dev set and stop training earlier.

▶ Try out different weight randomizations and take the one with
the lowest (validated) error.

▶ Or average the predictions (or apply bagging).
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Estimation summary

Estimating neural network parameters simply requires ‘propagating
back’ errors.

▶ We’re just applying (matrix) multiplications

▶ GPU’s can be very good for this

▶ Matrix multiplications can get pretty big (for large networks)

▶ Commonly not worth it to use the Hessian

▶ Should be careful with large values going into sigmoid
activations

▶ Results in saturated gradients
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Universal approximation theorem

Hornik’s theorem

Whenever the activation function is continuous, bounded,
and non-constant, then, for arbitrary compact subsets X ⊆
Rk , standard multilayer feedforward networks can approxi-
mate any continuous function on X arbitrarily well with re-
spect to uniform distance, provided that sufficiently many
hidden units are avaiable.

In words: A 2-layer neural network with enough hidden nodes can
closely approximate any continuous function f (x).

References:
Cybenko (1989) ”Approximations by superpostions of sigmoidal function”
Hornik (1991) ”Approximation Capabilities of Multilayer Feedforward
Networks”
Leshno and Schocken (1993) ”Multilayer Feedforward Networks with Non-Polynomial
Activation Functions Can Approximate Any Function”
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Universal approximation theorem

Given enough hidden nodes, we can approximate any
function.

Check out this visual example of this.
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http://neuralnetworksanddeeplearning.com/chap4.html


Universal approximation theorem

Some caveats to the theorem

▶ We’re approximating the function within some bound, i.e.
|f̂n(x)− f (x)| < ϵ.

▶ Result is meant for continuous functions on compact subsets
of R.

▶ Nothing is guaranteed on the how quickly we can learn the
function’s parameters.

▶ Other function estimators also do a good job approximating!
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Features

For non-linear functions,

Logistic regression: expand our feature set via transformations

▶ We have to specify the feature transformations

Neural network: define the model non-linearly

▶ The model learns the feature transformations

▶ This helps us greatly when dealing with abstract or high
dimensional problems (e.g. images & text)!
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Feature representation

How do the feature transformations get learned?

Original representation of curves Hidden layer representation of curves

Well demonstrated by Chris Olah’s blog.
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https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/


Example: The MNIST data

A linear model (e.g. for multinomial logistic regression)
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Example: The MNIST data

Neural network’s learned (kernel) features.
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Model generalizations

Knowing that we can simply back propagate errors via
multiplication opens many doors for us, e.g.

Google’s InceptionNet architecture

Problem: large networks are vulnerable to vanishing/exploding
gradients.
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The vanishing gradient problem

Recall: Our gradient is simply a product of partial derivatives.

Example neural network and gradient.

Question: What is the derivative of the sigmoid function?
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The vanishing gradient problem

Google’s InceptionNet address this via strategically placed loss
functions.

Google’s InceptionNet architecture
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Model generalizations

We can also train models end to end, e.g.

Encoder-decoder architecture

Or: in a modular fashion, e.g. pre-training.

STATS 202: Data Mining and Analysis L. Tran 32/40



Model generalizations

We can also train models end to end, e.g.

Encoder-decoder architecture

Or: in a modular fashion, e.g. pre-training.

STATS 202: Data Mining and Analysis L. Tran 32/40



Model generalizations

Or over multiple tasks (i.e. multi-task learning), e.g.

Kendall et al. 2017’s multi-task model
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https://arxiv.org/abs/1705.07115


Model generalizations

Many researchers will create unique architectures for specific
problems, e.g. Instacart

The prediction problem

The intial solution
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Model generalizations

Another example using the Netflix data.
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https://developers.google.com/machine-learning/crash-course/embeddings/obtaining-embeddings


Embeddings

The skip gram model
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The tensorflow playground

An interactive demo that allows you to play with a neural
network.
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https://playground.tensorflow.org


Additional topics

Neural net related core topics:

▶ Weight initializations
▶ Activation functions
▶ Optimization functions
▶ Loss functions
▶ Normalization
▶ Regularization / dropout
▶ Model architectures
▶ Hyperparameter optimization
▶ Bayesian neural networks
▶ Computation graphs
▶ Software / platforms
▶ Encoding / adding outside knowledge
▶ Hardware accelerators
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Additional topics

Neural net applied topics:

▶ Computer vision
▶ Natural language processing
▶ Signal processing
▶ Generative models
▶ Unsupervised learning
▶ Reinforcement learning
▶ One/Zero shot learning
▶ Transfer learning
▶ Auto-ML
▶ Memory Augmented Neural Networks
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