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Announcements

» Homework 4 due this Friday.

» Final project predictions due this Sunday night.
» Final project writeup is due next Wednesday.

» Optional (will take max of Final project & Final exam).
» Final exam is a week from this Saturday

» Time: August 19 @ 7:00 P.M. - 10:00 P.M.
» Location: Skilling Auditorium
» Practice exam to be released Friday

» Accommodation requests should be made now
» No formal lectures next week
» Review this Friday
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Neural networks

Currently, the most popular algorithm amongst ML practitioners.

» Many times, used within the context of Artificial Intelligence.
» Simply a general function estimation algorithm.
» Though is often hyped up the media.

Hype Cycle for Emerging Technologies, 2018

gartner.com/SmarterWithGartner

Gartner.

Gartner's hype cycle for 2018.
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Neural networks

Lots of buzz words, but what do they mean?

Definitions:
» Al: human-like machines or programs.
» ML: Algorithms that learn from data.
» DL: A type of ML algorithm, using
neural networks (typically with many
layers).
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Neural networks

But: what exactly are neural networks?

Direction message travels
Axon terminals

Soma
(cell body)

Myelin
Sheaths  —
&
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Some potential answers

» A universal function approximator.
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Neural networks

But: what exactly are neural networks?

Direction message travels
Axon terminals

Soma
(cell body)

Myelin
Sheaths  —
-,

Some potential answers
» A universal function approximator.
» A feature extractor.

» A model generalizer.
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Logistic regression

Recall: logistic regression is a linear model with a logit link
function, i.e.

P(Y =1|X) = (8o + S1 X1 + ... + BpXp) : 0(2)

Let's rephrase this by:
1. Using b to denote /3 (aka the bias)
2. Using W to denote (S, ..., Bp) (aka the weights)
3. Using matrix notation

P(Y =1X)= o (XW+b) (2)

non—linearity
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Logistic regression

When the function is non-linear, our prior option was to do feature
transformations, e.g.

» Expand predictor set (e.g. non-linear transformations,
interactions, etc.).

» Define a kernel (e.g. find a function f(-,-) that is positive
definite).
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Logistic regression

When the function is non-linear, our prior option was to do feature
transformations, e.g.

» Expand predictor set (e.g. non-linear transformations,
interactions, etc.).

» Define a kernel (e.g. find a function f(-,-) that is positive
definite).

Another option: build the non-linearity into the model
specification, e.g.

P(Y:1‘X):U(U(XW1+b1)W2+b2) (3)
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Logistic regression

When the function is non-linear, our prior option was to do feature
transformations, e.g.

» Expand predictor set (e.g. non-linear transformations,
interactions, etc.).

» Define a kernel (e.g. find a function f(-,-) that is positive
definite).

Another option: build the non-linearity into the model
specification, e.g.

P(Y:1‘X):U(U(XW1+b1)W2+b2) (3)

This is a neural network (with 1 hidden layer)!
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Hidden nodes

For logistic regression:

P(Y=1X)=c(X W +_ b ) (4)
px1 1x1
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Hidden nodes

For logistic regression:

P(Y=1X)=c(X W +_ b ) (4)
px1 1x1

For neural networks:

P(Y’ZZlD()ZZU(J(X w; + bl) W, + b ) (5)
—~ S
pxM  1xM Mx1 1x1

M specifies how many hidden nodes we have
» Called ‘hidden’ since it's not directly observed by us.

» Also referred to as ‘embeddings’.
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Hidden nodes

P(Y =1|X) = a(c(X Wy + by ) Wo + by ) (6)
N =~ =
pxM 1xM Mx1 1x1

FIGURE 11.2. Schematic of a single hidden layer, feed-forwand neural networ
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Hidden layers

We can iteratively apply our non-linear operations, e.g.
P(Y = 1’X) = O’(~ . -U(J(XWl + bl)W2 + b2) - Wg + bB) (7)

Where B is the number of iterations (i.e. hidden layers).
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Hidden layers

We can iteratively apply our non-linear operations, e.g.
P(Y = 1’X) = O’(~ . -U(J(XWl + bl)W2 + b2) - Wg + bB) (7)
Where B is the number of iterations (i.e. hidden layers).

Each activation (e.g. sigmoid) can approximate a local change

> B sigmoids = approximate at ~ B points

4.0 ——
e \ Linear Combination of:
35/ —— 2 sigmoids
[ \ 3 sigmoids
3.0 “ it 4 sigmoids
| | 5 sigmoids
25 i
\ Truth: y =3
>2.0 “‘
15 i\
| T
1.0 )
e
05 ~
0. i 2 3 a 5

n.b. Each layer needs the number of hidden nodes specified.
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Multinomial logistic regression

Our examples have been for binary outcomes so far.
Question: What about multinomial outcomes

> e.g. Which of digits 0 through 9 is this photo?
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Multinomial logistic regression

Our examples have been for binary outcomes so far.
Question: What about multinomial outcomes

> e.g. Which of digits 0 through 9 is this photo?

Recall: for logistic regression, we're modeling

P(Y =1|X
|Og[1—(IP’(Y:|1|)X)] = Bo+51X1+...+ﬁpo (8)

= XW (9)

where X is our n X p design matrix and W is our p x 1 parameter
vector.
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Multinomial logistic regression

For multinomial regression, let Y € {1,..., K}. We can
model
(Y=1x)1 _
log [IP’(Y —xx)| XW; (10)
P(Y =2|X) |
[ = XW 11
& [IP’(Y — K|X) 2 (11)
e = . (12)
P(Y =K-1X)]
I [ PY = KIX) = XWk_1 (13)

where each W\ is a p X 1 parameter vector.

Exponentiating both sides and solving for P(Y = K|X) (using the

fact that the probabilities have to sum to 1) gives us
1

1+ Y45, XW
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Multinomial logistic regression

Equivalently, can represent the multinomial logistic model as

log P(Y =1|X) = XW;j —log(2) (15)

log P(Y =2|X) = XW; —log(2) (16)

- ... (17)

log P(Y = K|X) = XWk —log(2) (18)
resulting in the following probabilities

By =1x) = —2PXW1) 19

WO S ooy "

(Y —2)x) = —2PXW2) 20

YO S ooy =

_ (21)

P(Y = K|X) exp(XWk) (22)

1 exp(XW)
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Multinomial logistic regression

This leads us to the softmax function, i.e.

XWi
SOftmaX(xW]_, PN ,XWK)k = m (23)
Or, more succintly, we have
XWK),.
softmax(XWHK), = exp(( i) (24)

>kt exp((XWK),.)
where the p x K matrix WK is simply the (concatenated) matrix
Ole,...,WK.

This is what multiclass neural networks are modeling!
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The chain rule

Recall: In logistic regression we try to maximize the likelihood

» Equivalent to minimizing the cross-entropy

L(yi, f(X;)) = —vyilog(pi) — (1 — y;)log(1l — p;), where(25)
1

P = e Z) (26)

Z = X;W (27)
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The chain rule

Recall: In logistic regression we try to maximize the likelihood

» Equivalent to minimizing the cross-entropy

L(yi, f(X;)) = —vyilog(pi) — (1 — y;)log(1l — p;), where(25)
1

P = e Z) (26)

Z = X;W (27)

Can apply the derivative chain rule to get our gradient, i.e.

BL(y,-, f(X,)) - aL(y,', f(X,)) 8,0,' 82,'
ow op 0z aw (28)
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The chain rule

Recall: In logistic regression we try to maximize the likelihood

» Equivalent to minimizing the cross-entropy

L(yi, f(X;)) = —vyilog(pi) — (1 — y;)log(1l — p;), where(25)
1
;= - 26
P 1+ exp(—2i) (26)
Zi = X;w (27)
Can apply the derivative chain rule to get our gradient, i.e.
BL(y,-, f(X,)) _ aL(y,', f(X,)) « 8,0,' % 82,' (28)
ow f)[)i f)QZ} ow
Which gives us
IL(yi, f(Xi))
= Xilyi — pi 29
W (vi — pi) (29)
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Backpropagation

Neural networks are simply a generalization of the logistic
regression case, e.g. for

P(Y = 1]X) = o(c(XW;) W) (30)

STATS 202: Data Mining and Analysis L. Tran 17/40



Backpropagation

Neural networks are simply a generalization of the logistic
regression case, e.g. for

P(Y = 11X) = o (0(X W;) Wh) (30)
Our loss is
L(yi, f(X;)) = —yilog(pi) — (1 — y;)log(1l — p;), where(31)
1
ey =)
4 = hiW, (33)
1
K v ) =
Z1; = XW, (35)
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Backpropagation

Our loss is

L(yi, f(X;)) = —yilog(pi) — (1 —yi)log(1l— p;), where(36)

1
. = - 37
P T ep(—220) (7)
i = hiW, (38)

1
hy = —m——— 39
1+ exp(—21,1) (39)
41 = XW, (40)

Applying the derivative chain rule:

oLy F(X)) _ 0L f(X))  Opi  0Za,
8W2 Bp; 8227,' 8W2

aL(y,', f(X)) _ 8L(y,-, f(X)) « ap,' % 8227,' % 8h,‘ % 8217,'
ow, opi 0Z; Oh; 0z, oW
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Gradient descent

Our gradient is estimated using our data, i.e.
(vi,Xj) :i=1,2,...,n.
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Gradient descent

Our gradient is estimated using our data, i.e.
(vi,Xi) :i=1,2,...,n.

We can estimate it using, e.g.
> Stochastic gradient descent: estimating our (full) gradient
using just one observation.

» Gradient descent: estimating our (full) gradient using all
observations.

» Mini-batch gradient descent: using a (random) subsample
of our observations.

Each will trade off between variance for the gradient and memory
size.
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Gradient descent %

Our gradient is estimated using our data, i.e.
(vi,Xi) :i=1,2,...,n.

We can estimate it using, e.g.
> Stochastic gradient descent: estimating our (full) gradient
using just one observation.

» Gradient descent: estimating our (full) gradient using all
observations.

» Mini-batch gradient descent: using a (random) subsample
of our observations.

Each will trade off between variance for the gradient and memory
size.

When done iteratively, we'll typically specify a stopping point (e.g.
by using a dev set).
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Gradient descent

The use of non-linearities results in multiple minima, tendency to
overfit, and can be unstable.
Some considerations to make:

» Set initial weight values near zero.
Over parameterize and regularize heavily.
Standardize input features.

>
>
» Use a dev set and stop training earlier.
>

Try out different weight randomizations and take the one with
the lowest (validated) error.

» Or average the predictions (or apply bagging).
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Estimation summary

Estimating neural network parameters simply requires ‘propagating
back’ errors.

» We're just applying (matrix) multiplications
» GPU's can be very good for this

» Matrix multiplications can get pretty big (for large networks)
» Commonly not worth it to use the Hessian

» Should be careful with large values going into sigmoid
activations

P Results in saturated gradients
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Universal approximation theorem

Hornik's theorem

Whenever the activation function is continuous, bounded,
and non-constant, then, for arbitrary compact subsets X C
R¥, standard multilayer feedforward networks can approxi-
mate any continuous function on X arbitrarily well with re-
spect to uniform distance, provided that sufficiently many
hidden units are avaiable.

STATS 202: Data Mining and Analysis L. Tran 22/40



Universal approximation theorem

Hornik's theorem

Whenever the activation function is continuous, bounded,
and non-constant, then, for arbitrary compact subsets X C
R¥, standard multilayer feedforward networks can approxi-
mate any continuous function on X arbitrarily well with re-
spect to uniform distance, provided that sufficiently many
hidden units are avaiable.

In words: A 2-layer neural network with enough hidden nodes can
closely approximate any continuous function f(x).

References:

Cybenko (1989) " Approximations by superpostions of sigmoidal function”

Hornik (1991) " Approximation Capabilities of Multilayer Feedforward

Networks"

Leshno and Schocken (1993) " Multilayer Feedforward Networks with Non-Polynomial
Activation Functions Can Approximate Any Function”
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Universal approximation theorem

Given enough hidden nodes, we can approximate any

function.
4.01 . —
(—\ Linear Combination of:
3.51/ ‘ 2 sigmoids
“\ 3 sigmoids
3.04 \‘\ 4 sigmoids
251 \‘\ — 5 sigmcoids2
“\ Truth:y =3
>2.0 1
\
1.5 AN
|
101 | \
\ I —
0.5{ \
% i 2 3 a 5
X
Check out this visual example of this.
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http://neuralnetworksanddeeplearning.com/chap4.html

Universal approximation theorem

Some caveats to the theorem

» We're approximating the function within some bound, i.e.
|fa(x) — F(X)| <e.

» Result is meant for continuous functions on compact subsets
of R.

» Nothing is guaranteed on the how quickly we can learn the
function’s parameters.

» Other function estimators also do a good job approximating!
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Features

For non-linear functions,

Logistic regression: expand our feature set via transformations

Neural network: define the model non-linearly
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Features

For non-linear functions,

Logistic regression: expand our feature set via transformations
» We have to specify the feature transformations

Neural network: define the model non-linearly

» The model learns the feature transformations
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Features

For non-linear functions,

Logistic regression: expand our feature set via transformations
» We have to specify the feature transformations

Neural network: define the model non-linearly
» The model learns the feature transformations

» This helps us greatly when dealing with abstract or high
dimensional problems (e.g. images & text)!
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Feature representation %

How do the feature transformations get learned?

\ /
\\ /,

— 1
\\ //
\ ~— /

N /

N\
\ /
\\ //
\\ v
Original representation of curves Hidden layer representation of curves

Well demonstrated by Chris Olah’s blog.
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https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Example: The MNIST data
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A linear model (e.g. for multinomial logistic regression)
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Example: The MNIST data

A Trained Neural Network in which each hidden Feeding a handwritten digit of 0 should trigger the 4
neuron classifies certain pattern hidden layer neurons, and then the first output neuron

Neural network’s learned (kernel) features.
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Model generalizations

Knowing that we can simply back propagate errors via
multiplication opens many doors for us, e.g.

1 § 1 EE mg
g 1 @ 3 pagugiiiagglgglie
pajuagedipiggaa i taatalgy o s
satgadfapdQd W we g,
B B
Convolution
Pooling
Other

Google's InceptionNet architecture
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Model generalizations

Knowing that we can simply back propagate errors via
multiplication opens many doors for us, e.g.

1 § 1 EE mg
g 1 @ 3 pagugiiiagglgglie
pajuagedipiggaa i taatalgy o s
satgadfapdQd W we g,
B B
Convolution
Pooling
Other

Google's InceptionNet architecture

Problem: /arge networks are vulnerable to vanishing/exploding
gradients.
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The vanishing gradient problem

Recall: Our gradient is simply a product of partial derivatives.

[5G —

5o, = 0'(21) x w2 X0’ (22) X W3 X 0'(23) X Wa X 0" (24) X g¢

day

Neural Network

Example neural network and gradient.

STATS 202: Data Mining and Analysis L. Tran 30/40



The vanishing gradient problem

Recall: Our gradient is simply a product of partial derivatives.

ac

5o, = 0'(21) x w2 X0’ (22) X W3 X 0'(23) X Wa X 0" (24) X g¢

day

Neural Network

Example neural network and gradient.

Question: What is the derivative of the sigmoid function?
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The vanishing gradient problem

Google's InceptionNet address this via strategically placed loss

functions.
1 1 1 1y 04
1 1 4.} Emﬂmﬂﬂggﬂﬂﬂmﬂmaﬂﬂ’
ﬁmﬂmﬂnﬂmmﬂmmﬂmmmﬂﬂmﬂmm gaigy
gadpadfaadgy OB e,
Bf BEE EE foas
Convolution
Pooling
Other

Google's InceptionNet architecture
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Model generalizations

We can also train models end to end, e.g.

ENCODER DECODER
| am good
<GO>
( Embedding )
how are you ?
L IL IL 1L 1 1L 1L
fime step 1 2 3 4 5 6 7

Encoder-decoder architecture
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Model generalizations

We can also train models end to end, e.g.

ENCODER DECODER
| am good
<GO>
( Embedding )
how are you ?
L IL IL 1L 1 1L 1L
fime step 1 2 3 4 5 6 7

Encoder-decoder architecture

Or: in a modular fashion, e.g. pre-training.
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Model generalizations

Or over multiple tasks (i.e. multi-task learning), e.g.

Semantic
Semantic Task
Decoder Uncertainty
Input Image )
K | et h Instance
nstance |, )
Encoder REt AR Tesk
Decoder % Uncertainty

Depth
Depth Task
Decoder — Uncertainty

Kendall et al. 2017's multi-task model
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https://arxiv.org/abs/1705.07115

Model generalizations

Many researchers will create unique architectures for specific
problems, e.g. Instacart

Last Next Candidates

YegRoPOBOGEe™

The prediction problem
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https://tech.instacart.com/deep-learning-with-emojis-not-math-660ba1ad6cdc

Model generalizations

Many researchers will create unique architectures for specific
problems, e.g. Instacart

Last Next Candidates

YegRoPOBOGEe™

The prediction problem

m 1

10m ’;? @
N

) - @&
Enbedding \ 0 3
10k \ 700k 10m l" -
1 ) 30 gEsaa 10 A EATI ™ PRk ™ i A3
0 0 & 2 . ross -
100k
—~ Embedding ~
-~ @ -32%
# te
parameters >3
p=s S |

The intial solution
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https://tech.instacart.com/deep-learning-with-emojis-not-math-660ba1ad6cdc

Model generalizations

Another example using the Netflix data.

3 Dimensional ‘Target prob.

dist (sparse)

OO
User Movies
(subset to use as "labels")

User Movies (subset used as input features)

| l Other features (optional) |

beddi from

Figure 5. A sample DNN architecture for learning movie ive filtering data.
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https://developers.google.com/machine-learning/crash-course/embeddings/obtaining-embeddings

The skip gram model

,
1
XY lomplunsiu

e
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The tensorflow playground

An interactive demo that allows you to play with a neural

network.

FEATURES

Which properties do
you want to feed in?
N @

4 neurons

OO0 M
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+

2 HIDDEN LAYERS

h @&

2 neurons

3
I

L. Tran

OUTPUT

Test loss 0.497
Training loss 0.510

Colors shows

dta, neuronand | !

weight values.

[0 Showtestdata  [J Discretize output
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https://playground.tensorflow.org

Additional topics

Neural net related core topics:

v

Weight initializations
Activation functions
Optimization functions

Loss functions

Normalization

Regularization / dropout
Model architectures
Hyperparameter optimization
Bayesian neural networks
Computation graphs
Software / platforms
Encoding / adding outside knowledge

VVVYVVVVYVYVYYVYYVYY

Hardware accelerators
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Additional topics

Neural net applied topics:

v

Computer vision

Natural language processing

Signal processing

Generative models

Unsupervised learning

Reinforcement learning

One/Zero shot learning

Transfer learning

Auto-ML

Memory Augmented Neural Networks

VVVYyVVYVYVYYVYY
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