Lecture 11: Boosting

STATS 202: Data Mining and Analysis

Linh Tran

tranlm@stanford.edu

Department of Statistics
Stanford University

August 2, 2023

STATS 202: Data Mining and Analysis L. Tran 1/19

mailto:tranlm@stanford.edu

Announcements

> Kaggle predictions due in 11 days.
» Homework 4 is out (due in 9 days)
» Final exam details TBD

» Final project review this Friday.

STATS 202: Data Mining and Analysis L. Tran 2/19

Outline

Boosting introduction
Boosting vs bagging
Boosting remarks
AdaBoost

Boosting training error
Gradient boosting

Regularization

vV v v v V. vV VY

Random tips

STATS 202: Data Mining and Analysis L. Tran 3/19

Recall

» Decision trees partition our feature space and make
predictions within each partitioned region.

» Bagging reduces the high variability of decision trees.

» Random forest further reduces variance via random variable
selection.

STATS 202: Data Mining and Analysis L. Tran 4/19

Recall

» Decision trees partition our feature space and make
predictions within each partitioned region.

» Bagging reduces the high variability of decision trees.

» Random forest further reduces variance via random variable
selection.

Question: Is there another way of improving the performance of
decision trees?

STATS 202: Data Mining and Analysis L. Tran 4/19

Boosting

Boosting uses a set of weak learners (e.g. decision trees) to create
a strong one.

STATS 202: Data Mining and Analysis L. Tran 5/19

Boosting

Boosting uses a set of weak learners (e.g. decision trees) to create
a strong one.

The general algorithm is:

1. Fit an initial f,? to the data and compute residuals r;.

STATS 202: Data Mining and Analysis L. Tran 5/19

Boosting

Boosting uses a set of weak learners (e.g. decision trees) to create
a strong one.

The general algorithm is:

1. Fit an initial f,? to the data and compute residuals r;.
2. Forb=1,...,B:

> Fit a weak leaner fnb on the residuals.

STATS 202: Data Mining and Analysis L. Tran 5/19

Boosting

Boosting uses a set of weak learners (e.g. decision trees) to create
a strong one.

The general algorithm is:

1. Fit an initial f,? to the data and compute residuals r;.
2. Forb=1,...,B:
> Fit a weak leaner fnb on the residuals.

» With learning rate \p, update prediction to:
Fo < o+ A2 (1)

STATS 202: Data Mining and Analysis L. Tran 5/19

Boosting

Boosting uses a set of weak learners (e.g. decision trees) to create
a strong one.

The general algorithm is:

1. Fit an initial f,? to the data and compute residuals r;.
2. Forb=1,...,B:
> Fit a weak leaner fnb on the residuals.
» With learning rate \p, update prediction to:
fo = Fot Aoy (1)

» Update the residuals
ri < r —)\bﬁ,b(x,'). (2)

STATS 202: Data Mining and Analysis L. Tran 5/19

Boosting

Boosting uses a set of weak learners (e.g. decision trees) to create
a strong one.

The general algorithm is:
1. Fit an initial f,? to the data and compute residuals r;.
2. Forb=1,...,B:
> Fit a weak leaner fnb on the residuals.
» With learning rate \p, update prediction to:
Fo = Fo + AbFY. (1)
» Update the residuals

))\, fb(y.
3. Output prediction, e.g. "< 1 Abfy (x1)- (2)

B
fa(x) = > AFP(x). (3)
b=1

STATS 202: Data Mining and Analysis L. Tran

5/19

Boosting hyperparameters

Hyper-parameters to consider when applying a boosting model:

» The number of learners (aka trees) B to use.
» The shrinkage parameter \p.
» The parameters of the learner (e.g. splits in each tree).

Typically, these are found via cross-validation.

STATS 202: Data Mining and Analysis L. Tran 6/19

Boosting vs bagging

Bagging: For b=1,...,B:
1. Created a bootstrapped
sample, P2,
2. Get estimate 7P(x) using
pb.
Average the estimates, i.e.

B
WA
b=1

fbag(x

W \

» P, is varied for each fit.
» Designed to reduce variance.

STATS 202: Data Mining and Analysis L. Tran

7/19

Boosting vs bagging

Bagging: For b=1,...,B:
1. Created a bootstrapped
sample, P2,
2. Get estimate 7P(x) using
pb.
Average the estimates, i.e.

B
WA
b=1

fbag(X

W \

» P, is varied for each fit.

» Designed to reduce variance.

STATS 202: Data Mining and Analysis

Boosting: For b=1,...,B:

1. Get estimate £2(x) for the
residuals r=1.

2. Update residuals
rb = r — ApFP(x;).

Sum the estimates, i.e.

B
oot (x) = > A (%)
b1

> 'Y’ is varied for each fit.
» Designed to reduce bias.

L. Tran 7/19

Boosting

Remarks:

» Boosting has been called the “best off-the-shelf classifier in
the world".

STATS 202: Data Mining and Analysis L. Tran 8/19

Boosting

Remarks:

» Boosting has been called the “best off-the-shelf classifier in
the world".

» Boosting (generally) works by upweighing points at each
iteration which are misclassified.

STATS 202: Data Mining and Analysis L. Tran 8/19

Boosting

Remarks:

» Boosting has been called the “best off-the-shelf classifier in
the world".

» Boosting (generally) works by upweighing points at each
iteration which are misclassified.

» Boosting can use any classifier as its weak learner (base
classifier) but decision trees are by far the most popular.

STATS 202: Data Mining and Analysis L. Tran 8/19

Boosting

Remarks:

» Boosting has been called the “best off-the-shelf classifier in
the world".

» Boosting (generally) works by upweighing points at each
iteration which are misclassified.

» Boosting can use any classifier as its weak learner (base
classifier) but decision trees are by far the most popular.

» Boosting learns slowly, first using the samples that are easiest
to predict, then slowly down weigh these cases, moving on to
harder samples.

STATS 202: Data Mining and Analysis L. Tran 8/19

Boosting

Remarks:

» Boosting has been called the “best off-the-shelf classifier in
the world".

» Boosting (generally) works by upweighing points at each
iteration which are misclassified.

» Boosting can use any classifier as its weak learner (base
classifier) but decision trees are by far the most popular.

» Boosting learns slowly, first using the samples that are easiest
to predict, then slowly down weigh these cases, moving on to
harder samples.

» Boosting can give zero training error, but rarely overfits.

STATS 202: Data Mining and Analysis L. Tran 8/19

Remarks:

» Boosting has been called the “best off-the-shelf classifier in
the world"”.

» Boosting (generally) works by upweighing points at each
iteration which are misclassified.

» Boosting can use any classifier as its weak learner (base
classifier) but decision trees are by far the most popular.

» Boosting learns slowly, first using the samples that are easiest
to predict, then slowly down weigh these cases, moving on to
harder samples.

» Boosting can give zero training error, but rarely overfits.

» Can be thought of as fitting a model on multiple data sets.

STATS 202: Data Mining and Analysis L. Tran 8/19

AdaBoost

A popular earlier version of boosting is AdaBoost:

1. Initialize the observation weights w; =1/n:i=1,....n.

STATS 202: Data Mining and Analysis L. Tran 9/19

AdaBoost

A popular earlier version of boosting is AdaBoost:

1. Initialize the observation weights w; =1/n:i=1,....n.
2. Forb=1,....B:

a Fit a classifier G?(x) to the training data using weights w;.

STATS 202: Data Mining and Analysis L. Tran 9/19

AdaBoost

A popular earlier version of boosting is AdaBoost:

1. Initialize the observation weights w; =1/n:i=1,....n.

2. Forb=1,....B:
a Fit a classifier G?(x) to the training data using weights w;.
b Compute

erry — Do Wi]I(r},/i # G°(xi)) ()

Do Wi

STATS 202: Data Mining and Analysis L. Tran 9/19

AdaBoost

A popular earlier version of boosting is AdaBoost:

1. Initialize the observation weights w; =1/n:i=1,....n.

2. Forb=1,....B:
a Fit a classifier G?(x) to the training data using weights w;.
b Compute

erry — Do Wi]I(r},/i # G°(xi)) ()

Do Wi

¢ Compute \p = log((1 — errp)/err)

STATS 202: Data Mining and Analysis L. Tran 9/19

AdaBoost

A popular earlier version of boosting is AdaBoost:

1. Initialize the observation weights w; =1/n:i=1,....n.

2. Forb=1,....B:
a Fit a classifier G?(x) to the training data using weights w;.
b Compute

orry — it willy; # G®(x)) ()

Do Wi

c Compute Ap = log((1 — errp)/errp)
d Set w; < w; - exp[Apl(yi # GP(x;))] :i=1,....n.

STATS 202: Data Mining and Analysis L. Tran 9/19

AdaBoost

A popular earlier version of boosting is AdaBoost:

1. Initialize the observation weights w; =1/n:i=1,....n.

2. Forb=1,....B:
a Fit a classifier G?(x) to the training data using weights w;.
b Compute

orry — it willy; # G®(x)) ()

Do Wi

c Compute Ap = log((1 — errp)/errp)
d Set w; < w; - exp[Apl(yi # GP(x;))] :i=1,....n.

3. Output Gg(x) = sign (Ele)\bi(x)>.

STATS 202: Data Mining and Analysis L. Tran 9/19

AdaBoost example

Test

Error Rate

— Train

0 300
Iteration

AdaBoost applied to the Sonar Data.

STATS 202: Data Mining and Analysis L. Tran 10/19

https://rdrr.io/cran/dprep/man/sonar.html

Training error

Question: What happens after the training error reaches 07

STATS 202: Data Mining and Analysis L. Tran 11/19

Training error

Question: What happens after the training error reaches 07

Define: 5)
* Z —)‘bG (X)
GB(X) = 2 13
Eb:l Ab

STATS 202: Data Mining and Analysis L. Tran 11/19

Training error

Question: What happens after the training error reaches 07

Define: 5)
* Z —)‘bG (X)
Gg(x) = b 13
Eb:l Ab

We can look at voting margins for our training data, i.e.

margin(x) = y * Gg(x) (6)

STATS 202: Data Mining and Analysis L. Tran 11/19

Training error

Question: What happens after the training error reaches 07

Define: 5)
* Z —)‘bG (X)
Gg(x) = b 13
Eb:l Ab

We can look at voting margins for our training data, i.e.

margin(x) = y * Gg(x) (6)

n.b. Letting err, < 1/2 — 7, then Errori, < (1/1 — 442)B

STATS 202: Data Mining and Analysis L. Tran 11/19

Gradient Boosting

AdaBoost can be framed as Forward Stagewise Additive
Modeling:

Algorithm 10.2 Forward Stagewise Additive Modeling.
1. Initialize fo(z) = 0.

2. Form =1to M:

(a) Compute
N
(Brs tm) = argmmin 3 L(gis frn1(21) + Bb(z337))-
i=1

(b) Set fn(2) = frn1(2) + Brb(w;Ym)-

where L(y, fm—1(x) + Bb(x;7)) is the exponential loss, i.e.

Ly, f(x)) = exp(—yf(x)) (7)

STATS 202: Data Mining and Analysis L. Tran 12/19

Gradient Boosting

Gradient boosting generalizes L(y, f(x)) to any smooth loss

function.

Some common loss functions:

TABLE 10.2. Gradients for commonly used loss functions.

Setting Loss Function —8L(y;, f(x:))/df (i)

Regression Sy — f@)? | yi — f(x:)

Regression lyi = ()] signy; — f(@:)]

Regression Huber yi — f(@3) for |y; — f(2i)] < 0m
Snsignlys — F(z)] for [y — £(2:)| > bm
where 6,,, = ath-quantile{|y; — f(z;)|}

Classification | Deviance kth component: I(y; = Gi) — pr(z:)

STATS 202: Data Mining and Analysis

L. Tran 13/19

Gradient Boosting algorithm

L. Initialize £2(x) = argmin >_7_, L(yi,7).
¥

STATS 202: Data Mining and Analysis L. Tran 14/19

Gradient Boosting algorithm

L. Initialize £2(x) = argmin >_7_, L(yi,7).
¥
2. Forb=1,...,B:

a Compute the residuals/gradients:

[fe))]
| [o (x)]ffm b ®)

STATS 202: Data Mining and Analysis L. Tran 14/19

Gradient Boosting algorithm

L. Initialize £2(x) = argmin >_7_, L(yi,7).
¥
2. Forb=1,...,B:

a Compute the residuals/gradients:

[fe))]
| [o (x)]ffm b ®)

b Fit a regression tree to r,-b, giving terminal regions
R}’ j=1,..,Jb

STATS 202: Data Mining and Analysis L. Tran 14/19

Gradient Boosting algorithm

L. Initialize £2(x) = argmin >_7_, L(yi,7).
¥
2. Forb=1,...,B:

a Compute the residuals/gradients:

[fe))]
| [o (x)]ffm b ®)

b Fit a regression tree to r,-b, giving terminal regions

b.:_ b
Rj j=1,...,J
c Forj=1,...,J° compute
7P = arg min Z Ly, 771 (x) +7) (9)

v X,‘ERJ-b

STATS 202: Data Mining and Analysis L. Tran 14/19

Gradient Boosting algorithm

L. Initialize £2(x) = argmin >_7_, L(yi,7).
¥
2. Forb=1,...,B:

a Compute the residuals/gradients:

[fe))]
| [o (x)]ffm b ®)

b Fit a regression tree to r,-b, giving terminal regions

b.:_ b
Rj j=1,...,J
c Forj=1,...,J° compute
7P = arg min Z Ly, 771 (x) +7) (9)

v X,‘ERJ-b

d Update Fo(x) = F1(x) + 00, 7PI(x € R)

j=

STATS 202: Data Mining and Analysis L. Tran 14/19

Gradient Boosting algorithm

L. Initialize £2(x) = argmin >_7_, L(yi,7).
¥
2. Forb=1,...,B:

a Compute the residuals/gradients:

[fe))]
| [o (x)]ffm b ®)

b Fit a regression tree to r,-b, giving terminal regions

b.:_ b
Rj j=1,...,J
c Forj=1,...,J° compute
7P = arg min Z Ly, 771 (x) +7) (9)

v XiEij
d Update f2(x) = f=1(x) + X0, 42I(x € RP)
3. Output fo(x) = FB(x).

STATS 202: Data Mining and Analysis L. Tran 14/19

Boosting vs. AdaBoost

Example: Applied to simulated data.

- 1 ——— Slumps
=] i 10 Node
\l‘u 100 Node
| Adaboost
|
‘I‘ \
\
] |
o [
| %
- (.
& [l ™
- \ \‘
% \
e 3 \ .
\ e o
\ \ - A
- B -
=]
o
(=]
T T T T T
] 100 200 300 400
Number of Terms

STATS 202: Data Mining and Analysis L. Tran 15/19

Boosting vs. random forests

Example: Applied to 15-class gene expression data.

wn
2 1 Boosting: depth=1
—— Boosting: depth=2
—— RandomForest: m=/p
5 & 4
o
w
c
8
g v |
s o
[%]
<
o
B o
[CED
Yo}
o 4
<]

T T T T T T
1000 2000 3000 4000 5000

o

Number of Trees

STATS 202: Data Mining and Analysis L. Tran 16/19

Regularization

Gradient boosting is greedy and can quickly overfit.

STATS 202: Data Mining and Analysis L. Tran 17/19

Regularization

Gradient boosting is greedy and can quickly overfit.
Regularization methods:

» Tree constraints: for each tree, limiting the e.g. number of
trees, depth, terminal nodes, obserations in a split,
improvement made.

STATS 202: Data Mining and Analysis L. Tran 17/19

Regularization

Gradient boosting is greedy and can quickly overfit.
Regularization methods:

» Tree constraints: for each tree, limiting the e.g. number of
trees, depth, terminal nodes, obserations in a split,
improvement made.

» Shrinkage: Each tree is weighted to slow down the learning by
the algorithm.

STATS 202: Data Mining and Analysis L. Tran 17/19

Regularization

Gradient boosting is greedy and can quickly overfit.
Regularization methods:

» Tree constraints: for each tree, limiting the e.g. number of
trees, depth, terminal nodes, obserations in a split,
improvement made.

» Shrinkage: Each tree is weighted to slow down the learning by
the algorithm.

» Random splitting: at each iteration a subsample of the
training data is drawn at random (without replacement).

STATS 202: Data Mining and Analysis L. Tran 17/19

Regularization %

Gradient boosting is greedy and can quickly overfit.
Regularization methods:

» Tree constraints: for each tree, limiting the e.g. number of
trees, depth, terminal nodes, obserations in a split,
improvement made.

» Shrinkage: Each tree is weighted to slow down the learning by
the algorithm.

» Random splitting: at each iteration a subsample of the
training data is drawn at random (without replacement).

» Penalized learning: Apply L1 or L2 regularization to the
terminal nodes.

STATS 202: Data Mining and Analysis L. Tran 17/19

Gradient boosting tips

Gradient boosting wins most of the Kaggle competitions.

» Trick is to fine tune the hyper-parameters during training.

STATS 202: Data Mining and Analysis L. Tran 18/19

https://www.youtube.com/watch?v=LgLcfZjNF44

Gradient boosting tips

Gradient boosting wins most of the Kaggle competitions.
» Trick is to fine tune the hyper-parameters during training.

Some tips from Kaggle master Owen Zhang:

GBDT Hyper Parameter Tuning

Hyper Parameter Tuning Approach Range Note

#of Trees Fixed value 100-1000 Depending on datasize
Learning Rate Fixed => Fine Tune [2-10)/ # of Trees Depending on # trees
Row Sampling Grid Search 15,.75,1.0)

Column Sampling Grid Search [4, .6, .8, 1.0]

Min Leaf Weight Fixed => Fine Tune 3/(% of rare events}) | Rule of thumb

Max Tree Depth Grid Search [4,6,8, 10)

Min Split Gain Fixed] Keep it0

Best GBOT implementation today: hitps J/g
by Tiangi Chen (U of Washington)

DataRobot

STATS 202: Data Mining and Analysis L. Tran 18/19

https://www.youtube.com/watch?v=LgLcfZjNF44

References

[1] ISL. Chapter 8
[2] ESL. Chapter 10
[3] Schapire, RE. The Boosting Approach to Machine Learning An

Overview. Nonlinear Estimation and Classification, Springer,
2003.

STATS 202: Data Mining and Analysis L. Tran 19/19

