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Announcements

▶ Kaggle predictions due in 11 days.

▶ Homework 4 is out (due in 9 days)

▶ Final exam details TBD

▶ Final project review this Friday.
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Outline

▶ Boosting introduction

▶ Boosting vs bagging

▶ Boosting remarks

▶ AdaBoost

▶ Boosting training error

▶ Gradient boosting

▶ Regularization

▶ Random tips
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Recall

▶ Decision trees partition our feature space and make
predictions within each partitioned region.

▶ Bagging reduces the high variability of decision trees.

▶ Random forest further reduces variance via random variable
selection.

Question: Is there another way of improving the performance of
decision trees?
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Boosting

Boosting uses a set of weak learners (e.g. decision trees) to create
a strong one.

The general algorithm is:

1. Fit an initial f̂ 0n to the data and compute residuals ri .

2. For b = 1, ...,B:

▶ Fit a weak leaner f̂ bn on the residuals.

▶ With learning rate λb, update prediction to:

f̂n ← f̂n + λb f̂
b
n . (1)

▶ Update the residuals

ri ← ri − λb f̂
b
n (xi ). (2)3. Output prediction, e.g.

f̂n(x) =
B∑

b=1

λb f̂
b
n (x). (3)
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Boosting hyperparameters

Hyper-parameters to consider when applying a boosting model:

▶ The number of learners (aka trees) B to use.

▶ The shrinkage parameter λb.

▶ The parameters of the learner (e.g. splits in each tree).

Typically, these are found via cross-validation.
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Boosting vs bagging

Bagging: For b = 1, . . . ,B:
1. Created a bootstrapped

sample, Pb
n .

2. Get estimate f̂ bn (x) using
Pb
n .

Average the estimates, i.e.

f̂ bagn (x) =
1

B

B∑
b=1

f̂ bn (x).

▶ Pn is varied for each fit.
▶ Designed to reduce variance.

Boosting: For b = 1, . . . ,B:
1. Get estimate f̂ bn (x) for the

residuals rb−1.
2. Update residuals

rbi = rb−1
i − λb f̂

b
n (xi ).

Sum the estimates, i.e.

f̂ boostn (x) =
B∑

b=1

λb f̂
b
n (x).

▶ ‘Y ’ is varied for each fit.
▶ Designed to reduce bias.
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Boosting

Remarks:

▶ Boosting has been called the “best off-the-shelf classifier in
the world”.

▶ Boosting (generally) works by upweighing points at each
iteration which are misclassified.

▶ Boosting can use any classifier as its weak learner (base
classifier) but decision trees are by far the most popular.

▶ Boosting learns slowly, first using the samples that are easiest
to predict, then slowly down weigh these cases, moving on to
harder samples.

▶ Boosting can give zero training error, but rarely overfits.
▶ Can be thought of as fitting a model on multiple data sets.
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AdaBoost

A popular earlier version of boosting is AdaBoost:

1. Initialize the observation weights wi = 1/n : i = 1, ..., n.

2. For b = 1, ...,B:

a Fit a classifier G b(x) to the training data using weights wi .

b Compute

errb =

∑n
i=1 wi I(yi ̸= G b(xi ))∑n

i=1 wi
(4)

c Compute λb = log((1− errb)/errb)

d Set wi ← wi · exp[λbI(yi ̸= G b(xi ))] : i = 1, ..., n.

3. Output GB(x) = sign
(∑B

b=1 λbG
b(x)

)
.
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AdaBoost example

0.0

0.1

0.2

0.3

0.4

0 100 200 300 400 500
Iteration

E
rr

or
 R

at
e Data

Test

Train

AdaBoost applied to the Sonar Data.
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Training error

Question: What happens after the training error reaches 0?

Define:

G ∗
B(x) =

∑B
b=1 λbG

b(x)∑B
b=1 λb

(5)

We can look at voting margins for our training data, i.e.

margin(x) = y ∗ G ∗
B(x) (6)
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n.b. Letting errb ≤ 1/2− γ, then Errortrain ≤ (
√
1− 4γ2)B
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Gradient Boosting

AdaBoost can be framed as Forward Stagewise Additive
Modeling:

where L(y , fm−1(x) + βb(x ; γ)) is the exponential loss, i.e.

L(y , f (x)) = exp(−yf (x)) (7)
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Gradient Boosting

Gradient boosting generalizes L(y , f (x)) to any smooth loss
function.

Some common loss functions:
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Gradient Boosting algorithm

1. Initialize f 0n (x) = argmin
γ

∑n
i=1 L(yi , γ).

2. For b = 1, ...,B:

a Compute the residuals/gradients:

rbi = −
[
∂L(yi , f (xi ))

∂f (xi )

]
f=f b−1

: i = 1, ..., n (8)

b Fit a regression tree to rbi , giving terminal regions
Rb
j : j = 1, ..., Jb

c For j = 1, ..., Jb, compute

γb
i = argmin

γ

∑
xi∈Rb

j

L(yi , f
b−1(xi ) + γ) (9)

d Update f b(x) = f b−1(x) +
∑Jb

j=1 γ
b
j I(x ∈ Rb

j )

3. Output f̂n(x) = f B(x).
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∑Jb

j=1 γ
b
j I(x ∈ Rb

j )

3. Output f̂n(x) = f B(x).
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Boosting vs. AdaBoost

Example: Applied to simulated data.
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Boosting vs. random forests

Example: Applied to 15-class gene expression data.
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Regularization

Gradient boosting is greedy and can quickly overfit.

Regularization methods:

▶ Tree constraints: for each tree, limiting the e.g. number of
trees, depth, terminal nodes, obserations in a split,
improvement made.

▶ Shrinkage: Each tree is weighted to slow down the learning by
the algorithm.

▶ Random splitting: at each iteration a subsample of the
training data is drawn at random (without replacement).

▶ Penalized learning: Apply L1 or L2 regularization to the
terminal nodes.
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Gradient boosting tips

Gradient boosting wins most of the Kaggle competitions.

▶ Trick is to fine tune the hyper-parameters during training.

Some tips from Kaggle master Owen Zhang:
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https://www.youtube.com/watch?v=LgLcfZjNF44
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