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Announcements

> Midterm grades are out.
» Homework 3 due Wednesday (2nd Edition)

» Problem 4 is bonus
» Final predictions due in 2 weeks

» Survey results are out (95% completion rate)
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Survey

Course pre-requisites

How well would you say you meet the course pre-requisites?

38 responses
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Survey

Course material

How do you feel about the combination of course material overall (including lectures, D copy
homework, and exams)?

38 responses

@ Just right

@ Too much focus on intuition
Too applied

@ Too theoretical
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Survey

Course pace

How do you feel about the course pace? O copy

38 responses

@ Somewhat too slow
@ Justright

Somewhat too fast
@ Way too fast
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Survey

Course density

How do you feel about the material density? IO copy

38 responses

@ Somewhat too sparse / repetitive
@ Just right

Somewhat too dense
@ Way too dense

2
g
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Survey

Course workload

How do you feel about the course workload? I_D Copy

38 responses

@ The work doesn't do enough to help me
learn the material

@ The work isn't targeted enough towards
the material being taught
The work is about right

@ The work is too much to justify what I'm
learning

@ | don't need the work to learn the
material
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Survey

Course in-person

How do you feel about completing the course in-person?
52 responses

@ |It's better than in remote classes
@ lt's the same as in remote classes

It's a little worse than in remote classes
@ It's much worse than in remote classes
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Survey

Course feedback (paraphrased)

» 95% completion rate.
» Great course. Thank you.

» You helped us prepare for the midterm.
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Survey

Course feedback (paraphrased)

Can we have extra credit?

Can homeworks be shorter?

Can you talk more slowly?

Can you go over notation/intuition more?
Can we have more Friday classes?

Can you provide more real world examples.

Can you solve math problems in class.

vV v v vV vV v VY

We need more Zoom/In-person office hours.
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Outline

» Decision trees
» Regression trees
» Classification trees
» Advantages / disadvantages
> Misc details
> Bagging

» Random Forests
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Decision trees, 10,000 foot view

T
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. Find a partition of the space

of predictors.

. Predict a constant in each

set of the partition.

. The partition is defined by

splitting the range of one
predictor at a time.
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Decision trees, 10,000 foot view

T

STATS 202: Data Mining and Analysis

. Find a partition of the space

of predictors.

. Predict a constant in each

set of the partition.

. The partition is defined by

splitting the range of one
predictor at a time.

— Not all partitions are
possible.
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Example: Predicting a baseball player’s salary

Years < 4.5
T

Hits </117.5

5.11

6.00

6.74

Hits

Ry

238

Rs

1175

4.5

The prediction for a point in R; is the average

points in R;.
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How is a decision tree built?

Using a greedy approach:

» Start with a single region Ry, and iterate:

» Select a region Ry, a predictor Xj, and a splitting point s, such
that splitting Ry with the criterion X; < s produces the largest
decrease in RSS:

17l

Z Z (vi — ¥r.)°
m=1x;€R,

» Redefine the regions with this additional split.

» Terminate when there are 5 observations or fewer in each
region.

» This grows the tree from the root towards the leaves.
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How is a decision tree built?

Years < 4.5
t
RBI 4605 Hits <[117.5
Putoufs < 82 Years|< 3.5
I Years]< 35 [ |
5.487 5394 6189
4622 5183
Walks|< 43.5 Walks|< 52.5
Runs k475 ‘ RBId 805
6.407 -
6015 5571 6549 Years[<65 7289
6459 7.007 :
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How do we control overfitting?

» Idea 1: Find the optimal subtree by cross validation.
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How do we control overfitting?

» Idea 1: Find the optimal subtree by cross validation.

— There are too many possibilities, so we would still over fit.
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How do we control overfitting?

» Idea 1: Find the optimal subtree by cross validation.

— There are too many possibilities, so we would still over fit.

» Idea 2: Stop growing the tree when the RSS doesn't drop by
more than a threshold with any new cut.
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How do we control overfitting?

» Idea 1: Find the optimal subtree by cross validation.

— There are too many possibilities, so we would still over fit.

» Idea 2: Stop growing the tree when the RSS doesn't drop by
more than a threshold with any new cut.

— In our greedy algorithm, it is possible to find good cuts
after bad ones.
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How do we control overfitting?

Solution:

Prune a large tree from the leaves to the root.
> Weakest link pruning:

» Starting with Tg, substitute a subtree with a leaf to obtain T,
by minimizing:
RSS(Ty) — RSS(To)
| To| = | Tal '

P |terate this pruning to obtain a sequence Ty, T1, To,..., T
where T, is the null tree.

» Select the optimal tree T; by cross validation.
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How do we control overfitting?

. or an equivalent procedure
> Cost complexity pruning;:
» Solve the problem:

[T
minimize Z Z (vi — 7r,)> + | T].
m=1x,€Ry,
» When o = oo, we select the null tree.
» When o = 0, we select the full tree.

» The solution for each « is among T, T»,..., T, from weakest
link pruning.

» Choose the optimal « (the optimal T;) by cross validation.
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Cross validation

1. Construct a sequence of trees Ty,..., T for a range of
values of a.

2. Split the training points into 10 folds.
3. For k=1,...,10,

» For each tree T;, use every fold except the kth to estimate the
averages in each region.

» For each tree T;, calculate the RSS in the test fold.

4. For each tree T;, average the 10 test errors, and select the
value of o that minimizes the error.
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Cross validation

1. Construct a sequence of trees Ty,..., T for a range of
values of a.

2. Split the training points into 10 folds.
3. For k=1,...,10,

» For each tree T;, use every fold except the kth to estimate the
averages in each region.

» For each tree T;, calculate the RSS in the test fold.

4. For each tree T;, average the 10 test errors, and select the
value of o that minimizes the error.

THIS IS THE WRONG WAY TO DO CROSS VALIDATION!
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Cross validation, the right way

1. Split the training points into 10 folds.
2. For k=1,...,10, using every fold except the kth:

» Construct a sequence of trees Ty,..., T, for a range of values
of a, and find the prediction for each region in each one.

» For each tree T;, calculate the RSS on the test set.

3. For each tree T;, average the 10 test errors, and select the
value of o that minimizes the error.
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Cross validation, the right way

1. Split the training points into 10 folds.
2. For k=1,...,10, using every fold except the kth:

» Construct a sequence of trees Ty,..., T, for a range of values
of a, and find the prediction for each region in each one.

» For each tree T;, calculate the RSS on the test set.

3. For each tree T;, average the 10 test errors, and select the
value of o that minimizes the error.

Note: We are doing all fitting, including the construction of the
trees, using only the training data.
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Example. Predicting baseball salaries

Mean Squared Error

\E\E\E\E\

+H
i

Unpruned tree (size=12)
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Example. Predicting baseball salaries

Years < 4.5
T

H —_1 -

s i g

Hits <[117.5
511 g A T T T T T
2 4 6 8 10
Tree Size
6.00 6.74

Short tree (size=3)

STATS 202: Data Mining and Analysis L. Tran 22/45



Classification trees

Work much like regression trees.

> We predict the response by majority vote, i.e. pick the most
common class in every region.

» Instead of trying to minimize the RSS:

Tl

SN i - Vra)

m=1x;€Rn

we minimize a classification loss function.

» Multiple losses to choose from
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Classification losses

» The 0-1 loss or misclassification rate:
IT|

>0 Ui # 9ra)

m=1 x;ERm,
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Classification losses

» The 0-1 loss or misclassification rate:
IT|

>0 Ui # 9ra)

m=1 x;ERm,

» The Gini index:
[T]

Z CImZPmk p\mk)y
m=1

where pp, « is the proportion of class k within Ry, and g, is
the proportion of samples in R,.
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Classification losses

» The 0-1 loss or misclassification rate:
IT|

>0 Ui # 9ra)

m=1 x;ERm,

» The Gini index:
[T]

Z CImZPmk p\mk)y
m=1

where pp, « is the proportion of class k within Ry, and g, is
the proportion of samples in R,.

» The entropy:
|7l

- am mek log(Bmk)-
m=1
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Classification losses

Losses for 2-class classication, as a function of the proportion p. Entropy
has been scaled to pass through (0.5, 0.5).
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Classification losses

Remarks:
» Motivation for the Gini index:

If instead of predicting the most likely class, we predict a
random sample from the distribution (p1,m, p2,m, - - - Pk.m),
the Gini index is the expected misclassification rate.

» The Gini index and entropy are better measures of the purity
of a region, i.e. they are low when the region is mostly one
category.

» It is typical to use the Gini index or entropy for growing the
tree, while using the misclassification rate when pruning the
tree.
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Example. Heart dataset.

Tata

05

Thata

Training
Cross-Validation

Error
03

02

BHHHE o

- TR Iy
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Decision tree advantages

Very easy to interpret!

Closer to human decision-making.

>
| 2
» Can capture complex interactions between variables.
» Easy to visualize graphically.

>

Easily handle qualitative predictors and missing data.
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Decision tree disadvantages

» Doesn't capture simple (e.g. linear) relationships well.
» Less accurate than other ML methods.

» Can have high variance.

& o

X, X,
X o X °
H
2 1 o 1 2 -2 1 0 1 2
X X
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Example. Heart dataset.

Question: How do we deal with categorical predictors?

Thal:a
+

Ca40.5 Ca 0.5

RestEGG < 1
ChestPain:a Yes

MaxHR|< 161.5 Chestfain:bc

RestBIp < 157

No Chol k 244 Sex k0.5

No No No Yes
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Categorical predictors

» If there are only 2 categories, then the split is obvious. We
don't have to choose the splitting point s, as for a numerical
variable.

» If there are more than 2 categories:
» Order the categories according to the average of the response:

ChestPain : a > ChestPain: ¢ > ChestPain: b

» Treat as a numerical variable with this ordering, and choose a
splitting point s.

» This is the optimal way of partitioning.
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Missing data

Problem: If a sample is missing variable Xj, and a tree contains a
split according to X > s, then we may not be able to assign the
sample to a region.
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Missing data

Problem: If a sample is missing variable Xj, and a tree contains a
split according to X > s, then we may not be able to assign the

sample to a region.

Solution:

» When choosing a new split with variable X; (growing the tree):
» Only consider the samples which have the variable X;.

» In addition to choosing the best split, choose a second best
split using a different variable, and a third best, ...

» To propagate a sample down the tree, if it is missing a
variable to make a decision, try the second best decision, or
the third best, etc...
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Bagging

Recall:
> Bagging = Bootstrap Aggregating

> We replicate our dataset by sampling with replacement:
» Original dataset: x = c(x1,x2,...,x100)

» Bootstrap samples:
bootl = sample(x, 100, replace = True), ...,
bootB = sample(x, 100, replace = True).

> \We average the predictions of a model fit to many Bootstrap

samples:
B

b=1

>

b

]

Uo\l—‘

STATS 202: Data Mining and Analysis L. Tran 33/45



When does Bagging make sense?

When a regression method or a classifier has a tendency to overfit,
Bagging reduces the variance of the prediction.

> When n is large, the empirical distribution is similar to the
true distribution of the samples.

» Bootstrap samples are like independent realizations of the
data.

» Bagging amounts to averaging the fits from many
independent datasets, which would reduce the variance by a
factor 1/B, i.e. 50°.
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Bagging decision trees

» Disadvantage: Every time we fit a decision tree to a
bootstrap sample, we get a different tree T?.

— Loss of interpretability
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Bagging decision trees

» Disadvantage: Every time we fit a decision tree to a
bootstrap sample, we get a different tree T?.

— Loss of interpretability
Variable importance:

» For each predictor, add up the total by which the RSS (or Gini
index) decreases every time we use the predictor in TP,

> Average this total over each Boostrap estimate T1,..., TB.

—_—
o 2 r &0 a0 100
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Out-of-bag (OOB) error

To estimate the test error of a bagging estimate, we could use
cross-validation.

Or instead, could just use observations that weren't sampled

» Each time we draw a Bootstrap sample, we only use 63% of
the observations.

» ldea: use the rest of the observations as a test set.

» OOB error:
> For each sample x;, find the prediction §° for all bootstrap
samples b which do not contain x;. There should be around
0.37B of them. Average these predictions to obtain )7,-°°b.

> Compute the error (y; — y°°P)2.

» Average the errors over all observations i =1,...,n.
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Out-of-bag (OOB) error

o
& 4
c
|
0
&
c
s ]
m o
v
5]
—— Test: Bagging
Test: RandomForest
. ~—— OOB: Bagging
S —— OOB: RandomForest

T T T T T T T
0 50 100 150 200 250 300

Number of Trees

The test error decreases as we increase B
(dashed line is the error for a plain decision tree).
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Random Forests

In general, bagging has a problem:

— The trees produced by different Bootstrap samples can be very
similar.

Specifically: The variance from bagging is

]_ _
P2

2
pa—i-B

Lowering p can lower our variance
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Random Forests:

> We fit a decision tree to different Bootstrap samples.

» When growing the tree, we select a random sample of m < p
predictors to consider in each step.

» This will lead to very different (or “uncorrelated”) trees from
each sample.

> Finally, average the prediction of each tree.
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Random Forests algorithm

Algorithm 15.1 Random Forest for Regression or Classification.
1. Forb=1to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T} to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Qutput the ensemble of trees {T;}5.
To make a prediction at a new point z:
Regression: [5(z) = % stzl Ty(z).

Classification: Letj G, (z) be the class pre@iction of the bth random-forest
tree. Then CE(z) = magority vote {Cy(z)}E.
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Random Forests vs. Bagging

o
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—— Test: Bagging
Test: RandomForest
. ~—— OOB: Bagging
S —— OOB: RandomForest
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Number of Trees

STATS 202: Data Mining and Analysis L. Tran 41/45



Random Forests vs. KNN

Random Forest Classifier 3-Nearest Neighbors

Training Error: 0.000 ‘Training Error: 0130
TestEmor. 0238 2
Bayes Emor.  0.210 o Bayes Error: 0210

Random forest can be thought of as weighted voting of the closest
points.
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Random Forests, choosing m

0.4

Test Classification Error
0.3

0.2

0 100 200 300 400 500

Number of Trees

The optimal m is usually around /p,
but this can be used as a tuning parameter.
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Test Misclassification Error
0.15 0.20 0.25 0.30

0.10

Yes, we
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0.52 0.34 0.25 0.19 0.15

Gra

(2,5) (2,25) (2, 50) (2, 100) (2, 150)

Number of (Relevant, Noise) Variables

can overfit using Random Forests!
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