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Announcements

▶ Midterm grades are out.

▶ Homework 3 due Wednesday (2nd Edition)

▶ Problem 4 is bonus

▶ Final predictions due in 2 weeks

▶ Survey results are out (95% completion rate)
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Survey
Course pre-requisites
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Survey
Course material
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Survey
Course pace
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Survey
Course density
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Survey
Course workload
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Survey
Course in-person
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Survey
Course feedback (paraphrased)

▶ 95% completion rate.

▶ Great course. Thank you.

▶ You helped us prepare for the midterm.
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Survey
Course feedback (paraphrased)

▶ Can we have extra credit?

▶ Can homeworks be shorter?

▶ Can you talk more slowly?

▶ Can you go over notation/intuition more?

▶ Can we have more Friday classes?

▶ Can you provide more real world examples.

▶ Can you solve math problems in class.

▶ We need more Zoom/In-person office hours.
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Outline

▶ Decision trees

▶ Regression trees

▶ Classification trees

▶ Advantages / disadvantages

▶ Misc details

▶ Bagging

▶ Random Forests
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Decision trees, 10,000 foot view
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1. Find a partition of the space
of predictors.

2. Predict a constant in each
set of the partition.

3. The partition is defined by
splitting the range of one
predictor at a time.

→ Not all partitions are
possible.

STATS 202: Data Mining and Analysis L. Tran 12/45



Decision trees, 10,000 foot view

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

1. Find a partition of the space
of predictors.

2. Predict a constant in each
set of the partition.

3. The partition is defined by
splitting the range of one
predictor at a time.

→ Not all partitions are
possible.

STATS 202: Data Mining and Analysis L. Tran 12/45



Example: Predicting a baseball player’s salary

|
Years < 4.5

Hits < 117.5
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The prediction for a point in Ri is the average of the training
points in Ri .
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How is a decision tree built?

Using a greedy approach:

▶ Start with a single region R1, and iterate:

▶ Select a region Rk , a predictor Xj , and a splitting point s, such
that splitting Rk with the criterion Xj < s produces the largest
decrease in RSS:

|T |∑
m=1

∑
xi∈Rm

(yi − ȳRm)
2

▶ Redefine the regions with this additional split.

▶ Terminate when there are 5 observations or fewer in each
region.

▶ This grows the tree from the root towards the leaves.
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How is a decision tree built?

|
Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5

Runs < 47.5

Walks < 52.5

RBI < 80.5

Years < 6.5

5.487

4.622 5.183

5.394 6.189

6.015 5.571
6.407 6.549

6.459 7.007
7.289
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How do we control overfitting?

▶ Idea 1: Find the optimal subtree by cross validation.

→ There are too many possibilities, so we would still over fit.

▶ Idea 2: Stop growing the tree when the RSS doesn’t drop by
more than a threshold with any new cut.

→ In our greedy algorithm, it is possible to find good cuts
after bad ones.
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How do we control overfitting?
Solution:

Prune a large tree from the leaves to the root.

▶ Weakest link pruning:

▶ Starting with T0, substitute a subtree with a leaf to obtain T1,
by minimizing:

RSS(T1)− RSS(T0)

|T0| − |T1|
.

▶ Iterate this pruning to obtain a sequence T0,T1,T2, . . . ,Tm

where Tm is the null tree.

▶ Select the optimal tree Ti by cross validation.
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How do we control overfitting?

... or an equivalent procedure

▶ Cost complexity pruning:

▶ Solve the problem:

minimize

|T |∑
m=1

∑
xi∈Rm

(yi − ȳRm)
2 + α|T |.

▶ When α = ∞, we select the null tree.

▶ When α = 0, we select the full tree.

▶ The solution for each α is among T1,T2, . . . ,Tm from weakest
link pruning.

▶ Choose the optimal α (the optimal Ti ) by cross validation.
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Cross validation

1. Construct a sequence of trees T0, . . . ,Tm for a range of
values of α.

2. Split the training points into 10 folds.

3. For k = 1, . . . , 10,

▶ For each tree Ti , use every fold except the kth to estimate the
averages in each region.

▶ For each tree Ti , calculate the RSS in the test fold.

4. For each tree Ti , average the 10 test errors, and select the
value of α that minimizes the error.

THIS IS THE WRONG WAY TO DO CROSS VALIDATION!
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Cross validation, the right way

1. Split the training points into 10 folds.

2. For k = 1, . . . , 10, using every fold except the kth:

▶ Construct a sequence of trees T1, . . . ,Tm for a range of values
of α, and find the prediction for each region in each one.

▶ For each tree Ti , calculate the RSS on the test set.

3. For each tree Ti , average the 10 test errors, and select the
value of α that minimizes the error.

Note: We are doing all fitting, including the construction of the
trees, using only the training data.
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Example. Predicting baseball salaries
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Example. Predicting baseball salaries

|
Years < 4.5

Hits < 117.5
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Short tree (size=3)
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Classification trees

Work much like regression trees.

▶ We predict the response by majority vote, i.e. pick the most
common class in every region.

▶ Instead of trying to minimize the RSS:

|T |∑
m=1

∑
xi∈Rm

(yi − ȳRm)
2

we minimize a classification loss function.

▶ Multiple losses to choose from

STATS 202: Data Mining and Analysis L. Tran 23/45



Classification losses

▶ The 0-1 loss or misclassification rate:
|T |∑
m=1

∑
xi∈Rm

1(yi ̸= ŷRm)

▶ The Gini index:
|T |∑
m=1

qm

K∑
k=1

p̂mk(1− p̂mk),

where p̂m,k is the proportion of class k within Rm, and qm is
the proportion of samples in Rm.

▶ The entropy:

−
|T |∑
m=1

qm

K∑
k=1

p̂mk log(p̂mk).
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Classification losses

Losses for 2-class classication, as a function of the proportion p. Entropy
has been scaled to pass through (0.5, 0.5).
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Classification losses

Remarks:

▶ Motivation for the Gini index:

If instead of predicting the most likely class, we predict a
random sample from the distribution (p̂1,m, p̂2,m, . . . , p̂K ,m),
the Gini index is the expected misclassification rate.

▶ The Gini index and entropy are better measures of the purity
of a region, i.e. they are low when the region is mostly one
category.

▶ It is typical to use the Gini index or entropy for growing the
tree, while using the misclassification rate when pruning the
tree.
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Example. Heart dataset.
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Decision tree advantages

▶ Very easy to interpret!

▶ Closer to human decision-making.

▶ Can capture complex interactions between variables.

▶ Easy to visualize graphically.

▶ Easily handle qualitative predictors and missing data.
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Decision tree disadvantages

▶ Doesn’t capture simple (e.g. linear) relationships well.

▶ Less accurate than other ML methods.

▶ Can have high variance.
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Example. Heart dataset.

Question: How do we deal with categorical predictors?

|
Thal:a

Ca < 0.5

MaxHR < 161.5

RestBP < 157

Chol < 244
MaxHR < 156

MaxHR < 145.5

ChestPain:bc

Chol < 244 Sex < 0.5

Ca < 0.5

Slope < 1.5

Age < 52 Thal:b

ChestPain:a

Oldpeak < 1.1

RestECG < 1

No Yes
No

No
Yes

No

No No No Yes

Yes No No

No Yes

Yes Yes

Yes

5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Tree Size

E
rr

o
r

Training
Cross−Validation
Test

|
Thal:a

Ca < 0.5

MaxHR < 161.5 ChestPain:bc

Ca < 0.5

No No

No Yes

Yes Yes

STATS 202: Data Mining and Analysis L. Tran 30/45



Categorical predictors

▶ If there are only 2 categories, then the split is obvious. We
don’t have to choose the splitting point s, as for a numerical
variable.

▶ If there are more than 2 categories:
▶ Order the categories according to the average of the response:

ChestPain : a > ChestPain : c > ChestPain : b

▶ Treat as a numerical variable with this ordering, and choose a
splitting point s.

▶ This is the optimal way of partitioning.
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Missing data

Problem: If a sample is missing variable Xj , and a tree contains a
split according to Xj > s, then we may not be able to assign the
sample to a region.

Solution:

▶ When choosing a new split with variable Xj (growing the tree):
▶ Only consider the samples which have the variable Xj .

▶ In addition to choosing the best split, choose a second best
split using a different variable, and a third best, ...

▶ To propagate a sample down the tree, if it is missing a
variable to make a decision, try the second best decision, or
the third best, etc...
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Bagging

Recall:

▶ Bagging = Bootstrap Aggregating

▶ We replicate our dataset by sampling with replacement:
▶ Original dataset: x = c(x1, x2, . . . , x100)

▶ Bootstrap samples:
boot1 = sample(x, 100, replace = True), ...,
bootB = sample(x, 100, replace = True).

▶ We average the predictions of a model fit to many Bootstrap
samples:

f̂ bagn (x) =
1

B

B∑
b=1

f̂ bn (x).
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When does Bagging make sense?

When a regression method or a classifier has a tendency to overfit,
Bagging reduces the variance of the prediction.

▶ When n is large, the empirical distribution is similar to the
true distribution of the samples.

▶ Bootstrap samples are like independent realizations of the
data.

▶ Bagging amounts to averaging the fits from many
independent datasets, which would reduce the variance by a
factor 1/B, i.e. 1

Bσ
2.
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Bagging decision trees

▶ Disadvantage: Every time we fit a decision tree to a
bootstrap sample, we get a different tree T b.

→ Loss of interpretability

Variable importance:

▶ For each predictor, add up the total by which the RSS (or Gini
index) decreases every time we use the predictor in T b.

▶ Average this total over each Boostrap estimate T 1, . . . ,TB .
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Out-of-bag (OOB) error

To estimate the test error of a bagging estimate, we could use
cross-validation.

Or instead, could just use observations that weren’t sampled

▶ Each time we draw a Bootstrap sample, we only use 63% of
the observations.

▶ Idea: use the rest of the observations as a test set.

▶ OOB error:
▶ For each sample xi , find the prediction ŷb

i for all bootstrap
samples b which do not contain xi . There should be around
0.37B of them. Average these predictions to obtain ŷoob

i .

▶ Compute the error (yi − ŷoob
i )2.

▶ Average the errors over all observations i = 1, . . . , n.

STATS 202: Data Mining and Analysis L. Tran 36/45



Out-of-bag (OOB) error
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Random Forests

In general, bagging has a problem:

→ The trees produced by different Bootstrap samples can be very
similar.

Specifically: The variance from bagging is

ρσ2 +
1− ρ

B
σ2

Lowering ρ can lower our variance
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Random Forests:

▶ We fit a decision tree to different Bootstrap samples.

▶ When growing the tree, we select a random sample of m < p
predictors to consider in each step.

▶ This will lead to very different (or “uncorrelated”) trees from
each sample.

▶ Finally, average the prediction of each tree.
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Random Forests algorithm
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Random Forests vs. Bagging
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Random Forests vs. KNN

Random forest can be thought of as weighted voting of the closest
points.
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Random Forests, choosing m
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Overfitting with Random Forests

Yes, we can overfit using Random Forests!
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