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Syllabus

▶ Topics: Intro to statistical learning and methods for analyzing
large amounts of data

▶ Prereqs: STATS 60, MATH 51, CS 105

▶ Grades: 3 components

▶ 4 homework assignments (50pts each)

▶ Due by 4:30pm PDT of due date. Accepted up to 2-days late
w/ 20% penalty after 1st day (2 total free late days)

▶ Submit via Gradescope (code: ZZXX28)

▶ Midterm on Monday, July 19 (100pts)
▶ Final exam on Saturday, August 19 (200pts)
▶ Final project (200pts)

▶ Submissions due on Monday, August 14 at 12:00AM (i.e.
Sunday night)

▶ Write-up due on Wednesday, August 16

▶ We take max(Final exam, Final project)
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https://stats-202.github.io/syllabus.html
https://stats-202.github.io/project.html


Class material
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Programming

While the course textbook uses R (upcoming Python), you are free
to choose between R and Python. Some thoughts:

▶ R (style guide)

▶ Good visualizations
▶ More detailed result outputs
▶ Embraced by statistician community
▶ Follow Hadley Wickham’s Style Guide

▶ Python (style guide)

▶ Good scalability
▶ More detailed debugging logs
▶ Embraced by ML community
▶ Follow PEP 8 style guide

10% of your assignment grade is based upon the
organization + style + readability of your code
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Course Information

▶ Class website: stats-202.github.io

▶ Videos: In-person lectures will be recorded/uploaded to
Canvas.

▶ Textbook: An Introduction to Statistical Learning

▶ Supplemental Textbook: The Elements of Statistical
Learning

▶ Email policy: Please use Piazza (code: 2023202) for most
questions. Homeworks and Exams should be submitted via
Gradescope (code: ZZXX28).

▶ Office hours: Please refer to this Google calendar.
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Motivation

Companies are paying lots of money for statistical models.

▶ Netflix

▶ Heritage Provider Network

▶ Department of Homeland Security

▶ Zillow

▶ Etc...
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https://www.kaggle.com/c/hhp
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Netflix

Popularized prediction challenges by organizing an open, blind
contest to improve its recommendation system.

▶ Prize: $1 million

▶ Features: User ratings (1 to 5 stars) on previously watched
films

▶ Outcome: User ratings (1 to 5 stars) for unwatched films
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Heritage Provider Network

Ran for two years, with six milestone prizes during that span.

▶ Prize: $3 million ($500K)

▶ Features: Anonymized patient data over a 48 month period

▶ Outcome: How many days a patient will spend in a hospital
in the next year
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Department of Homeland Security

Improving the algorithms used by TSA to detect potential threats
from body scans.

▶ Prize: $1 million

▶ Features: Body scan images

▶ Outcome: Whether a given body zone has a threat present
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OpenAI

Creator of ChatGPT (https://chat.openai.com)

▶ Compensation: $900K for Senior Engineers

▶ Features: Input text

▶ Outcome: Desired responses
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Empirical vs true distributions

Common scenario: I have a data set. What do I do?
Common approaches:

▶ Fit a linear model and look at p-values

▶ Fit a non-parametric model and get predictions

▶ Calculate summary statistics and form a story around the
answers
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Empirical vs true distributions

Common scenario: I have a data set. What do I do?
Common approaches:

▶ Fit a linear model and look at p-values

▶ Fit a non-parametric model and get predictions

▶ Calculate summary statistics and form a story around the
answers

Can result in significantly different answers!
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Empirical vs true distributions

Ideally, we want Ψ(P0).
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Empirical vs true distributions

Example: P0 is Gaussian, while P̂n is Laplace
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Applied example

The World War II planes.
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Applied example

▶ Let O = (X1,X2,Y ) be our data

▶ e.g. X’s are (horizontal/vertical) location of holes. Y is
indicator that plane returned home.

▶ Generally want to estimate P0[X1,X2|Y = 0]

▶ Two big issues:

1. Need to condition on planes we don’t observe

2. Need to make assumption about the distribution of holes
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Supervised vs unsupervised learning

Supervised: We have a clearly defined outcome of interest.

▶ Pro: More clearly defined

▶ Con: May take more resources to gather

Unsupervised: We don’t have a clearly defined outcome of
interest.

▶ Pro: Typically readily available

▶ Con: May be a more abstract problem
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Unsupervised learning

Typically start with a data matrix, e.g.

*n.b. The data may also be unstructured (e.g. text, pixels,
etc).
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Unsupervised learning

Two primary categories:

1. Quantitative:

▶ Numerical

▶ Ordinal

2. Qualitative:

▶ Categorical

▶ Free form
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Unsupervised learning

Goal: Learn the overall structure of our data. e.g.

▶ Clustering: learn meaningful groupings of the data

▶ e.g. k-means, Expectation Maximization, etc.

▶ Correlation: learn meaningful relationships between variables
or units

▶ e.g. concordance, Pearson’s, etc.

▶ Dimension reduction: learn compression of data for
downstream tasks

▶ e.g. PCA, LDA, auto-encoding, etc.

We learn these using our data.
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Supervised learning

Typically start with a data matrix with an outcome, e.g.

Outcome can be quantitative or qualitative.
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Supervised learning

Goal: We learn a mapping from input variables to output
variables.

▶ If quantitative, then we refer to this as Regression

▶ e.g. E0[Y |X1,X2, ...,Xp]

▶ If qualitative, then we refer to this as Classification

▶ e.g. P0[Y = y |X1,X2, ...,Xp]

In both cases, we’re interested in learning some function,

f0(X1,X2, ...,Xp) (1)

We estimate f0 using our data.
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Supervised learning

Motivation: Why learn f0?

Prediction

▶ Useful when we can readily get X1,X2, ...,Xp, but not Y .

▶ Allows us to predict what Y likely is.

▶ Example: Predict stock prices next month using data from
last year.

Inference

▶ Allows us to understand how differences in X1,X2, ...,Xp

might affect Y .

▶ Example: What is the influence of genetic variations on the
incidence of heart disease.
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Learning f0

How do we estimate f0? Two classes of methods:

▶ Parametric models: We assume that f0 takes a specific
form. For example, a linear form:

f0(X1,X2, ...,Xp) = X1β1 + X2β2 + ...+ Xpβp (2)

▶ Non-parametric models: We don’t make any assumptions
on the form of f0, but we restrict how “wiggly” or “rough”
the function can be. For example, using loess.
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Parametric vs non-parametric models

Visualization

Non-parametric models tend to be larger than parametric models.

Recall: A statistical model is simply a set of probability
distributions that you allow your data to follow.
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Parametric vs non-parametric fit

Non-parametric models tend to be more flexible.
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Parametric vs non-parametric models

Question: Why don’t we just always use non-parametric models?

1. Interpretability: parametric models are simpler to interpret

2. Convenience: less computation, more reproducibility, better
behavior

3. Overfitting: non-parametric models tend to overfit (aka. high
variance)
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Prediction error

Training data: (xi , yi ) : i = 1, 2, ..., n
Goal: Estimate f0 with our data, resulting in f̂n

Typically: we get f̂n by minimizing a prediction error

▶ Assumes (xi , yi )
iid∼ P0

Standard prediction error functions:

▶ Classification: Cross-entropy

CE (f̂n) = E0[−yi · log f̂n(xi )] (3)

▶ Regression: Mean squared error

MSE (f̂n) = E0[yi − f̂n(xi )]
2 (4)
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Prediction error

Cross entropy:

CE (f̂n) = E0[−yi · log f̂n(xi )] (5)

n.b. We can’t directly calculate this, since P0 is unknown.

But:
We do have Pn, i.e. our training data (xi , yi ) : i = 1, 2, ..., n.

Estimating cross entropy

ĈE (f̂n) = En[−yi · log f̂n(xi )] (6)

=
1

n

n∑
i=1

−yi · log f̂n(xi ) (7)
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Prediction error

Similarly:

We estimate the mean squared error using our data.

Estimating mean squared error

M̂SE (f̂n) = En[yi − f̂n(xi )]
2 (8)

=
1

n

n∑
i=1

(yi − f̂n(xi ))
2 (9)
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Prediction error

There are two common problems with prediction errors:

1. A high prediction error could mean underfitting.

▶ e.g. You could have the wrong functional form

2. A low prediction error could mean overfitting.

▶ e.g. You made your model too flexible
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Underfitting

1. A high prediction error could mean underfitting.
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Overfitting

2. A low prediction error could mean overfitting.
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Prediction error

How to tell if we’ve under/overfit:

▶ Evaluate on data not used in training (i.e. from your test set).

Given our test data (xi
′, yi

′) : i = 1, 2, ...,m, we can calculate a
more accurate prediction error, e.g.:

M̂SE (f̂n) = Etest
n [yi

′ − f̂n(xi
′)]2 (10)

=
1

m

m∑
i=1

(yi
′ − f̂n(xi

′))2 (11)
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Prediction error

How to tell if we’ve under/overfit:

▶ So, now we have two prediction error estimates, e.g.:

1. M̂SE
train

(f̂n) from our training data

2. M̂SE
test

(f̂n) from our test data

If M̂SE
train

(f̂n) << M̂SE
test

(f̂n), then we’ve likely overfit on our
training data.
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How to tell if we’ve under/overfit:
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How to tell if we’ve under/overfit (with an almost linear f0):
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How to tell if we’ve under/overfit (with low noise):
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Bias variance decomposition

Let x0 be a fixed point, y0 = f0(x0) + ϵ, and f̂n be an estimate of f0
from (xi , yi ) : i = 1, 2, ..., n.

The MSE at x0 can be decomposed as

MSE (x0) = E0[y0 − f̂n(x0)]
2 (12)

= Var(f̂n(x0)) + Bias(f̂n(x0))
2 + Var(ϵ0)(13)

STATS 202: Data Mining and Analysis L. Tran 39/52



Bias variance decomposition

MSE (x0) = Var(f̂n(x0)) + Bias(f̂n(x0))
2 + Var(ϵ0)

Var(ϵ0)

Noise from the data distribution, i.e. irreducible error.
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Bias variance decomposition

MSE (x0) = Var(f̂n(x0)) + Bias(f̂n(x0))
2 + Var(ϵ0)

Var(f̂n(x0))

The variance of f̂n(x0) (i.e. the estimate of y).
How much the estimate f̂n at x0 changes with new data.
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Bias variance decomposition

MSE (x0) = Var(f̂n(x0)) + Bias(f̂n(x0))
2 + Var(ϵ0)
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Bias variance decomposition

MSE (x0) = Var(f̂n(x0)) + Bias(f̂n(x0))
2 + Var(ϵ0)

Var(f̂n(x0))

The variance of f̂n(x0) (i.e. the estimate of y).
How much the estimate f̂n at x0 changes with new data.
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Bias variance decomposition

MSE (x0) = Var(f̂n(x0)) + Bias(f̂n(x0))
2 + Var(ϵ0)

Bias(f̂n(x0))
2

The square of the expected difference, E2[f̂n(x0)− f0(x0)].
How far the average prediction f̂n is from f0 at x0.
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Bias variance decomposition

MSE (x0) = Var(f̂n(x0)) + Bias(f̂n(x0))
2 + Var(ϵ0)

Implications:

▶ The MSE is always non-negative.

▶ Each element on the right side is always non-negative.

▶ Consequently, lowering one element (beyond some point)
typically increases another.

Bias variance trade-off

More flexibility ⇐⇒ Higher variance ⇐⇒ Lower bias
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Bias variance decomposition

Bias variance trade-off

More flexibility ⇐⇒ Higher variance ⇐⇒ Lower bias
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Classification

In classification, the output takes values in a discrete set (c.f.
continuous values in regression).

Example

If we’re trying to predict the brand of a car (based on input
features), the function f0 outputs the (conditional) probabil-
ities of each car brand (e.g. Ford, Toyota, Mercedes, etc.),
e.g.

P0[Y = y |X1,X2, ...,Xp] : y ∈ {Ford ,Toyota,Mercedes, etc .}(14)
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Comparisons

Regression: f0 = E0[Y |X1,X2, ...,Xp]

▶ A scalar value, i.e. f0 ∈ R

▶ f̂n therefore gives us estimates of y

Classification: f0 = P0[Y = y |X1,X2, ...,Xp]

▶ A vectored value, i.e.
f0 = [p1, p2, ..., pK ] : pj ∈ [0, 1],

∑
K pj = 1

▶ n.b. In a binary setting this simplies to a scalar, i.e.
f0 = p1 : p1 = P0[Y = 1|X1,X2, ...,Xp] ∈ [0, 1]

▶ f̂n therefore gives us predictions of each class
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Bayes classifier

▶ f0 gives us a probability of the observation belonging to each
class.

▶ To select a class, we can just pick the element in
f0 = [p1, p2, ..., pK ] that’s the largest

▶ Called the Bayes Classifier

▶ As a classifier, produces the lowest error rate

Bayes error rate

1− E0

[
max
y

P0[Y = y |X1,X2, ...,Xp]

]
(15)

Analogous to the irreducible error described previously
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Bayes classifier

Example: Classifying in 2 classes with 2 features.

The Bayes error rate is 0.1304.
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Bayes classifier

Note: C(x) =argmax
y

f0(y) may seem easier to estimate

▶ Can still be hard, depending on the distribution f0, e.g.
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