Lecture 1: Course logistics, introduction, bias-variance tradeoff

STATS 202: Data Mining and Analysis

Linh Tran
tranlm@stanford.edu

Department of Statistics
Stanford University

June 26, 2023

Syllabus

- Topics: Intro to statistical learning and methods for analyzing large amounts of data
- Prereqs: STATS 60, MATH 51, CS 105
- Grades: 3 components
- 4 homework assignments (50pts each)
- Due by 4:30pm PDT of due date. Accepted up to 2-days late w/ 20\% penalty after 1st day (2 total free late days)
- Submit via Gradescope (code: ZZXX28)
- Midterm on Monday, July 19 (100pts)
- Final exam on Saturday, August 19 (200pts)
- Final project (200pts)
- Submissions due on Monday, August 14 at 12:00AM (i.e. Sunday night)
- Write-up due on Wednesday, August 16
- We take \max (Final exam, Final project)

Class material

Programming

While the course textbook uses \mathbf{R} (upcoming Python), you are free to choose between R and Python. Some thoughts:

- R (style guide)
- Good visualizations
- More detailed result outputs
- Embraced by statistician community
- Follow Hadley Wickham's Style Guide
- Python (style guide)
- Good scalability
- More detailed debugging logs
- Embraced by ML community
- Follow PEP 8 style guide

10% of your assignment grade is based upon the organization + style + readability of your code

Course Information

- Class website: stats-202.github.io
- Videos: In-person lectures will be recorded/uploaded to Canvas.
- Textbook: An Introduction to Statistical Learning
- Supplemental Textbook: The Elements of Statistical Learning
- Email policy: Please use Piazza (code: 2023202) for most questions. Homeworks and Exams should be submitted via Gradescope (code: ZZXX28).
- Office hours: Please refer to this Google calendar.

Companies are paying lots of money for statistical models.

- Netflix
- Heritage Provider Network
- Department of Homeland Security
- Zillow
- Etc...

Netflix

Popularized prediction challenges by organizing an open, blind contest to improve its recommendation system.

- Prize: $\$ 1$ million
- Features: User ratings (1 to 5 stars) on previously watched films
- Outcome: User ratings (1 to 5 stars) for unwatched films

Movies

Heritage Provider Network

Ran for two years, with six milestone prizes during that span.

- Prize: $\$ 3$ million ($\$ 500 \mathrm{~K}$)
- Features: Anonymized patient data over a 48 month period
- Outcome: How many days a patient will spend in a hospital in the next year

Department of Homeland Security

Improving the algorithms used by TSA to detect potential threats from body scans.

- Prize: $\$ 1$ million
- Features: Body scan images
- Outcome: Whether a given body zone has a threat present

Creator of ChatGPT (https://chat.openai.com)

- Compensation: \$900K for Senior Engineers
- Features: Input text
- Outcome: Desired responses

Empirical vs true distributions

Common scenario: I have a data set. What do I do? Common approaches:

- Fit a linear model and look at p-values
- Fit a non-parametric model and get predictions
- Calculate summary statistics and form a story around the answers

Empirical vs true distributions

Common scenario: I have a data set. What do I do? Common approaches:

- Fit a linearmodel and look at p-values
- Fit a non-parametric model and get predictions
- Calculate summary statistics and form a story around the answers

Can result in significantly different answers!

Empirical vs true distributions

Ideally, we want $\Psi\left(P_{0}\right)$.

Empirical vs true distributions

Example: P_{0} is Gaussian, while \hat{P}_{n} is Laplace

Applied example

The World War II planes.

Applied example

- Let $O=\left(X_{1}, X_{2}, Y\right)$ be our data
- e.g. X's are (horizontal/vertical) location of holes. Y is indicator that plane returned home.
- Generally want to estimate $\mathbb{P}_{0}\left[X_{1}, X_{2} \mid Y=0\right]$
- Two big issues:

1. Need to condition on planes we don't observe
2. Need to make assumption about the distribution of holes

Supervised vs unsupervised learning

Supervised: We have a clearly defined outcome of interest.

- Pro: More clearly defined
- Con: May take more resources to gather

Unsupervised: We don't have a clearly defined outcome of interest.

- Pro: Typically readily available
- Con: May be a more abstract problem

Unsupervised learning

Typically start with a data matrix, e.g.

id	weight	height	\# children	education level	gender	profession	my life story
1							
2							
3							
.							

*n.b. The data may also be unstructured (e.g. text, pixels, etc).

Unsupervised learning

id	weight	height	\# children	education level	gender	profession	my life story
1							
2							
3							
.							

Two primary categories:

1. Quantitative:

- Numerical
- Ordinal

2. Qualitative:

- Categorical
- Free form

Unsupervised learning

Goal: Learn the overall structure of our data. e.g.

- Clustering: learn meaningful groupings of the data
- e.g. k-means, Expectation Maximization, etc.
- Correlation: learn meaningful relationships between variables or units
- e.g. concordance, Pearson's, etc.
- Dimension reduction: learn compression of data for downstream tasks
- e.g. PCA, LDA, auto-encoding, etc.

We learn these using our data.

Supervised learning

Typically start with a data matrix with an outcome, e.g.

id	weight	height	\# children	education level	gender	profession	my life story	outcome
1								
2								
3								
.								

Outcome can be quantitative or qualitative.

Supervised learning

Goal: We learn a mapping from input variables to output variables.

- If quantitative, then we refer to this as Regression
- e.g. $\mathbb{E}_{0}\left[Y \mid X_{1}, X_{2}, \ldots, X_{p}\right]$
- If qualitative, then we refer to this as Classification
- e.g. $\mathbb{P}_{0}\left[Y=y \mid X_{1}, X_{2}, \ldots, X_{p}\right]$

In both cases, we're interested in learning some function,

$$
\begin{equation*}
f_{0}\left(X_{1}, X_{2}, \ldots, X_{p}\right) \tag{1}
\end{equation*}
$$

We estimate f_{0} using our data.

Supervised learning

Motivation: Why learn f_{0} ?
Prediction

- Useful when we can readily get $X_{1}, X_{2}, \ldots, X_{p}$, but not Y.
- Allows us to predict what Y likely is.
- Example: Predict stock prices next month using data from last year.

Inference

- Allows us to understand how differences in $X_{1}, X_{2}, \ldots, X_{p}$ might affect Y.
- Example: What is the influence of genetic variations on the incidence of heart disease.

Learning f_{0}

How do we estimate f_{0} ? Two classes of methods:

- Parametric models: We assume that f_{0} takes a specific form. For example, a linear form:

$$
\begin{equation*}
f_{0}\left(X_{1}, X_{2}, \ldots, X_{p}\right)=X_{1} \beta_{1}+X_{2} \beta_{2}+\ldots+X_{p} \beta_{p} \tag{2}
\end{equation*}
$$

- Non-parametric models: We don't make any assumptions on the form of f_{0}, but we restrict how "wiggly" or "rough" the function can be. For example, using loess.

Parametric vs non-parametric models

Visualization

Non-parametric models tend to be larger than parametric models.
Recall: A statistical model is simply a set of probability distributions that you allow your data to follow.

Parametric vs non-parametric fit

Non-parametric models tend to be more flexible.

Parametric vs non-parametric models

Question: Why don't we just always use non-parametric models?

Parametric vs non-parametric models

Question: Why don't we just always use non-parametric models?

1. Interpretability: parametric models are simpler to interpret

Parametric vs non-parametric models

Question: Why don't we just always use non-parametric models?

1. Interpretability: parametric models are simpler to interpret
2. Convenience: less computation, more reproducibility, better behavior

Parametric vs non-parametric models

Question: Why don't we just always use non-parametric models?

1. Interpretability: parametric models are simpler to interpret
2. Convenience: less computation, more reproducibility, better behavior
3. Overfitting: non-parametric models tend to overfit (aka. high variance)

Prediction error

Training data: $\left(x_{i}, y_{i}\right): i=1,2, \ldots, n$
Goal: Estimate f_{0} with our data, resulting in \hat{f}_{n}
Typically: we get \hat{f}_{n} by minimizing a prediction error

- Assumes $\left(x_{i}, y_{i}\right) \stackrel{i i d}{\sim} P_{0}$

Prediction error

Training data: $\left(x_{i}, y_{i}\right): i=1,2, \ldots, n$
Goal: Estimate f_{0} with our data, resulting in \hat{f}_{n}
Typically: we get \hat{f}_{n} by minimizing a prediction error

- Assumes $\left(x_{i}, y_{i}\right) \stackrel{i i d}{\sim} P_{0}$

Standard prediction error functions:

- Classification: Cross-entropy

$$
\begin{equation*}
\operatorname{CE}\left(\hat{f}_{n}\right)=\mathbb{E}_{0}\left[-\mathbf{y}_{i} \cdot \log \hat{\mathbf{f}}_{n}\left(x_{i}\right)\right] \tag{3}
\end{equation*}
$$

Prediction error

Training data: $\left(x_{i}, y_{i}\right): i=1,2, \ldots, n$
Goal: Estimate f_{0} with our data, resulting in \hat{f}_{n}
Typically: we get \hat{f}_{n} by minimizing a prediction error

- Assumes $\left(x_{i}, y_{i}\right) \stackrel{i i d}{\sim} P_{0}$

Standard prediction error functions:

- Classification: Cross-entropy

$$
\begin{equation*}
\operatorname{CE}\left(\hat{f}_{n}\right)=\mathbb{E}_{0}\left[-\mathbf{y}_{i} \cdot \log \hat{\mathbf{f}}_{n}\left(x_{i}\right)\right] \tag{3}
\end{equation*}
$$

- Regression: Mean squared error

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{f}_{n}\right)=\mathbb{E}_{0}\left[y_{i}-\hat{f}_{n}\left(x_{i}\right)\right]^{2} \tag{4}
\end{equation*}
$$

Prediction error

Cross entropy:

$$
\begin{equation*}
C E\left(\hat{f}_{n}\right)=\mathbb{E}_{0}\left[-\mathbf{y}_{i} \cdot \log \hat{\mathbf{f}}_{n}\left(x_{i}\right)\right] \tag{5}
\end{equation*}
$$

n.b. We can't directly calculate this, since P_{0} is unknown.

Prediction error

Cross entropy:

$$
\begin{equation*}
C E\left(\hat{f}_{n}\right)=\mathbb{E}_{0}\left[-\mathbf{y}_{i} \cdot \log \hat{\mathbf{f}}_{n}\left(x_{i}\right)\right] \tag{5}
\end{equation*}
$$

n.b. We can't directly calculate this, since P_{0} is unknown.

But:

We do have P_{n}, i.e. our training data $\left(x_{i}, y_{i}\right): i=1,2, \ldots, n$.

Prediction error

Cross entropy:

$$
\begin{equation*}
C E\left(\hat{f}_{n}\right)=\mathbb{E}_{0}\left[-\mathbf{y}_{i} \cdot \log \hat{\mathbf{f}}_{n}\left(x_{i}\right)\right] \tag{5}
\end{equation*}
$$

n.b. We can't directly calculate this, since P_{0} is unknown.

But:

We do have P_{n}, i.e. our training data $\left(x_{i}, y_{i}\right): i=1,2, \ldots, n$.

Estimating cross entropy

$$
\begin{align*}
\widehat{C E}\left(\hat{f}_{n}\right) & =\mathbb{E}_{n}\left[-\mathbf{y}_{i} \cdot \log \hat{\mathbf{f}}_{n}\left(x_{i}\right)\right] \tag{6}\\
& =\frac{1}{n} \sum_{i=1}^{n}-\mathbf{y}_{i} \cdot \log \hat{\mathbf{f}}_{n}\left(x_{i}\right) \tag{7}
\end{align*}
$$

Prediction error

Similarly:

We estimate the mean squared error using our data.

Estimating mean squared error

$$
\begin{align*}
\widehat{\operatorname{MSE}}\left(\hat{f}_{n}\right) & =\mathbb{E}_{n}\left[y_{i}-\hat{f}_{n}\left(x_{i}\right)\right]^{2} \tag{8}\\
& =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{f}_{n}\left(x_{i}\right)\right)^{2} \tag{9}
\end{align*}
$$

Prediction error

There are two common problems with prediction errors:

1. A high prediction error could mean underfitting.

- e.g. You could have the wrong functional form

Prediction error

There are two common problems with prediction errors:

1. A high prediction error could mean underfitting.

- e.g. You could have the wrong functional form

2. A low prediction error could mean overfitting.

- e.g. You made your model too flexible

Underfitting

1. A high prediction error could mean underfitting.

True function f_{0}.

Observed data and estimated function \hat{f}_{n}.

Overfitting

2. A low prediction error could mean overfitting.

True function, f_{0}.

Observed data and estimated function \hat{f}_{n}.

Prediction error

How to tell if we've under/overfit:

- Evaluate on data not used in training (i.e. from your test set).

Given our test data $\left(x_{i}^{\prime}, y_{i}^{\prime}\right): i=1,2, \ldots, m$, we can calculate a more accurate prediction error, e.g.:

$$
\begin{align*}
\widehat{\operatorname{MSE}}\left(\hat{f}_{n}\right) & =\mathbb{E}_{n}^{\text {test }}\left[y_{i}^{\prime}-\hat{f}_{n}\left(x_{i}^{\prime}\right)\right]^{2} \tag{10}\\
& =\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}^{\prime}-\hat{f}_{n}\left(x_{i}^{\prime}\right)\right)^{2} \tag{11}
\end{align*}
$$

Prediction error

How to tell if we've under/overfit:

- So, now we have two prediction error estimates, e.g.:

1. $\widehat{M S E}^{\text {train }}\left(\hat{f}_{n}\right)$ from our training data
2. $\widehat{M S E}^{\text {test }}\left(\hat{f}_{n}\right)$ from our test data

If $\widehat{M S E}^{\text {train }}\left(\hat{f}_{n}\right) \ll \widehat{M S E}^{\text {test }}\left(\hat{f}_{n}\right)$, then we've likely overfit on our training data.

How to tell if we've under/overfit:

Estimates \hat{f}_{n} of f_{0}.

$\widehat{M S E}$ for each \hat{f}_{n}.

How to tell if we've under/overfit (with an almost linear f_{0}):

Estimates \hat{f}_{n} of f_{0}.

$\widehat{M S E}$ for each \hat{f}_{n}.

Low flexibility models work well.

How to tell if we've under/overfit (with low noise):

Estimates \hat{f}_{n} of f_{0}.

$\widehat{M S E}$ for each \hat{f}_{n}.

High flexibility models work well.

Bias variance decomposition

Let x_{0} be a fixed point, $y_{0}=f_{0}\left(x_{0}\right)+\epsilon$, and \hat{f}_{n} be an estimate of f_{0} from $\left(x_{i}, y_{i}\right): i=1,2, \ldots, n$.

The MSE at x_{0} can be decomposed as

$$
\begin{aligned}
\operatorname{MSE}\left(x_{0}\right) & =\mathbb{E}_{0}\left[y_{0}-\hat{f}_{n}\left(x_{0}\right)\right]^{2} \\
& =\operatorname{Var}\left(\hat{f}_{n}\left(x_{0}\right)\right)+\operatorname{Bias}\left(\hat{f}_{n}\left(x_{0}\right)\right)^{2}+\operatorname{Var}\left(\epsilon_{0}\right)(13)
\end{aligned}
$$

Bias variance decomposition

$$
\operatorname{MSE}\left(x_{0}\right)=\operatorname{Var}\left(\hat{f}_{n}\left(x_{0}\right)\right)+\operatorname{Bias}\left(\hat{f}_{n}\left(x_{0}\right)\right)^{2}+\operatorname{Var}\left(\epsilon_{0}\right)
$$

$\operatorname{Var}\left(\epsilon_{0}\right)$

Noise from the data distribution, i.e. irreducible error.

True function, f_{0} and observed data.

Bias variance decomposition

$$
\operatorname{MSE}\left(x_{0}\right)=\operatorname{Var}\left(\hat{f}_{n}\left(x_{0}\right)\right)+\operatorname{Bias}\left(\hat{f}_{n}\left(x_{0}\right)\right)^{2}+\operatorname{Var}\left(\epsilon_{0}\right)
$$

$\operatorname{Var}\left(\hat{f}_{n}\left(x_{0}\right)\right)$

The variance of $\hat{f}_{n}\left(x_{0}\right)$ (i.e. the estimate of y). How much the estimate \hat{f}_{n} at x_{0} changes with new data.

Observed data and estimate \hat{f}_{n}.

Bias variance decomposition

$$
\operatorname{MSE}\left(x_{0}\right)=\operatorname{Var}\left(\hat{f}_{n}\left(x_{0}\right)\right)+\operatorname{Bias}\left(\hat{f}_{n}\left(x_{0}\right)\right)^{2}+\operatorname{Var}\left(\epsilon_{0}\right)
$$

Bias variance decomposition

$$
\operatorname{MSE}\left(x_{0}\right)=\operatorname{Var}\left(\hat{f}_{n}\left(x_{0}\right)\right)+\operatorname{Bias}\left(\hat{f}_{n}\left(x_{0}\right)\right)^{2}+\operatorname{Var}\left(\epsilon_{0}\right)
$$

$\operatorname{Var}\left(\hat{f}_{n}\left(x_{0}\right)\right)$

The variance of $\hat{f}_{n}\left(x_{0}\right)$ (i.e. the estimate of y). How much the estimate \hat{f}_{n} at x_{0} changes with new data.

Bias variance decomposition

$$
\operatorname{MSE}\left(x_{0}\right)=\operatorname{Var}\left(\hat{f}_{n}\left(x_{0}\right)\right)+\operatorname{Bias}\left(\hat{f}_{n}\left(x_{0}\right)\right)^{2}+\operatorname{Var}\left(\epsilon_{0}\right)
$$

$\operatorname{Bias}\left(\hat{f}_{n}\left(x_{0}\right)\right)^{2}$

The square of the expected difference, $\mathbb{E}^{2}\left[\hat{f}_{n}\left(x_{0}\right)-f_{0}\left(x_{0}\right)\right]$. How far the average prediction \hat{f}_{n} is from f_{0} at x_{0}.

Bias variance decomposition

$$
\operatorname{MSE}\left(x_{0}\right)=\operatorname{Var}\left(\hat{f}_{n}\left(x_{0}\right)\right)+\operatorname{Bias}\left(\hat{f}_{n}\left(x_{0}\right)\right)^{2}+\operatorname{Var}\left(\epsilon_{0}\right)
$$

Implications:

- The MSE is always non-negative.
- Each element on the right side is always non-negative.
- Consequently, lowering one element (beyond some point) typically increases another.

Bias variance trade-off

More flexibility \Longleftrightarrow Higher variance \Longleftrightarrow Lower bias

Bias variance decomposition

Bias variance trade-off

More flexibility \Longleftrightarrow Higher variance \Longleftrightarrow Lower bias

Squiggly f, high noise

Linear f, high noise

Squiggly f, low noise

Classification

In classification, the output takes values in a discrete set (c.f. continuous values in regression).

Example

If we're trying to predict the brand of a car (based on input features), the function f_{0} outputs the (conditional) probabilities of each car brand (e.g. Ford, Toyota, Mercedes, etc.), e.g.
$\mathbb{P}_{0}\left[Y=y \mid X_{1}, X_{2}, \ldots, X_{p}\right]: y \in\{$ Ford, Toyota, Mercedes, etc. $\}(14)$

Comparisons

Regression: $f_{0}=\mathbb{E}_{0}\left[Y \mid X_{1}, X_{2}, \ldots, X_{p}\right]$

- A scalar value, i.e. $f_{0} \in \mathbb{R}$
- \hat{f}_{n} therefore gives us estimates of y

Classification: $f_{0}=\mathbb{P}_{0}\left[Y=y \mid X_{1}, X_{2}, \ldots, X_{p}\right]$

- A vectored value, i.e.

$$
f_{0}=\left[p_{1}, p_{2}, \ldots, p_{K}\right]: p_{j} \in[0,1], \sum_{K} p_{j}=1
$$

- n.b. In a binary setting this simplies to a scalar, i.e.

$$
f_{0}=p_{1}: p_{1}=\mathbb{P}_{0}\left[Y=1 \mid X_{1}, X_{2}, \ldots, X_{p}\right] \in[0,1]
$$

- \hat{f}_{n} therefore gives us predictions of each class

Bayes classifier

- f_{0} gives us a probability of the observation belonging to each class.
- To select a class, we can just pick the element in $f_{0}=\left[p_{1}, p_{2}, \ldots, p_{K}\right]$ that's the largest
- Called the Bayes Classifier
- As a classifier, produces the lowest error rate

Bayes error rate

$$
\begin{equation*}
1-\mathbb{E}_{0}\left[\max _{y} \mathbb{P}_{0}\left[Y=y \mid X_{1}, X_{2}, \ldots, X_{p}\right]\right] \tag{15}
\end{equation*}
$$

Analogous to the irreducible error described previously

Bayes classifier

Example: Classifying in 2 classes with 2 features.

The Bayes error rate is 0.1304 .

Bayes classifier

Note: $\mathcal{C}(\mathbf{x})=\arg \max f_{0}(y)$ may seem easier to estimate y

- Can still be hard, depending on the distribution f_{0}, e.g.

Bayes error $=0.0$

Bayes error $=0.3$

References

[1] ISL. Chapters 1-2.
[2] ESL. Chapters 1-2.

