Lecture 1: Course logistics, introduction, bias-variance tradeoff STATS 202: Data Mining and Analysis

Linh Tran

tranlm@stanford.edu

Department of Statistics Stanford University

June 26, 2023

Syllabus

- Topics: Intro to statistical learning and methods for analyzing large amounts of data
- ▶ Prereqs: STATS 60, MATH 51, CS 105
- **Grades:** 3 components
 - 4 homework assignments (50pts each)
 - Due by 4:30pm PDT of due date. Accepted up to 2-days late w/ 20% penalty after 1st day (2 total free late days)
 - Submit via Gradescope (code: ZZXX28)
 - Midterm on Monday, July 19 (100pts)
 - Final exam on Saturday, August 19 (200pts)
 - Final project (200pts)
 - Submissions due on Monday, August 14 at 12:00AM (i.e. Sunday night)
 - Write-up due on Wednesday, August 16
 - We take max(Final exam, Final project)

While the course textbook uses ${\bf R}$ (upcoming Python), you are free to choose between R and Python. Some thoughts:

- ► R (style guide)
 - Good visualizations
 - More detailed result outputs
 - Embraced by statistician community
 - ► Follow Hadley Wickham's Style Guide
- Python (style guide)
 - Good scalability
 - More detailed debugging logs
 - Embraced by ML community
 - ► Follow *PEP 8 style guide*

10% of your assignment grade is based upon the organization + style + readability of your code

- Class website: stats-202.github.io
- Videos: In-person lectures will be recorded/uploaded to Canvas.
- Textbook: An Introduction to Statistical Learning
 - Supplemental Textbook: The Elements of Statistical Learning
- Email policy: Please use *Piazza* (code: 2023202) for most questions. Homeworks and Exams should be submitted via *Gradescope* (code: ZZXX28).
- Office hours: Please refer to this Google calendar.

Companies are paying lots of money for statistical models.

► Netflix

- Heritage Provider Network
- Department of Homeland Security
- ► Zillow

Popularized prediction challenges by organizing an open, blind contest to improve its recommendation system.

- Prize: \$1 million
- Features: User ratings (1 to 5 stars) on previously watched films
- Outcome: User ratings (1 to 5 stars) for unwatched films

Ran for two years, with six milestone prizes during that span.

- Prize: \$3 million (\$500K)
- ▶ Features: Anonymized patient data over a 48 month period
- Outcome: How many days a patient will spend in a hospital in the next year

Improving the algorithms used by TSA to detect potential threats from body scans.

- Prize: \$1 million
- **Features:** Body scan images
- Outcome: Whether a given body zone has a threat present

Creator of ChatGPT (https://chat.openai.com)

- **Compensation:** \$900K for Senior Engineers
- **Features:** Input text
- Outcome: Desired responses

Common scenario: I have a data set. What do I do? **Common approaches:**

- Fit a linear model and look at p-values
- Fit a non-parametric model and get predictions
- Calculate summary statistics and form a story around the answers

Common scenario: I have a data set. What do I do? **Common approaches:**

- Fit a linear model and look at p-values
- Fit a non-parametric model and get predictions
- Calculate summary statistics and form a story around the answers

Can result in significantly different answers!

Empirical vs true distributions

Ideally, we want $\Psi(P_0)$.

Empirical vs true distributions

Example: P_0 is Gaussian, while \hat{P}_n is Laplace

Applied example

The World War II planes.

• Let $O = (X_1, X_2, Y)$ be our data

- e.g. X's are (horizontal/vertical) location of holes. Y is indicator that plane returned home.
- Generally want to estimate $\mathbb{P}_0[X_1, X_2 | Y = 0]$
- Two big issues:
 - 1. Need to condition on planes we don't observe
 - 2. Need to make assumption about the distribution of holes

Supervised: We have a clearly defined outcome of interest.

- Pro: More clearly defined
- Con: May take more resources to gather

Unsupervised: We don't have a clearly defined outcome of interest.

- Pro: Typically readily available
- Con: May be a more abstract problem

Typically start with a data matrix, e.g.

id	weight	height	# children	education level	gender	profession	my life story
1							
2							
3							

*n.b. The data may also be unstructured (e.g. text, pixels, etc).

Unsupervised learning

id	weight	height	# children	education level	gender	profession	my life story
1							
2							
3							

Two primary categories:

- 1. Quantitative:
 - Numerical
 - Ordinal
- 2. Qualitative:
 - Categorical
 - Free form

STATS 202: Data Mining and Analysis

Goal: Learn the overall structure of our data. e.g.

- Clustering: learn meaningful groupings of the data
 - e.g. k-means, Expectation Maximization, etc.
- Correlation: learn meaningful relationships between variables or units
 - e.g. concordance, Pearson's, etc.
- Dimension reduction: learn compression of data for downstream tasks
 - e.g. PCA, LDA, auto-encoding, etc.

We learn these using our data.

Typically start with a data matrix with an outcome, e.g.

id	weight	height	# children	education level	gender	profession	my life story	outcome
1								
2								
3								

Outcome can be quantitative or qualitative.

Goal: We learn a mapping from input variables to output variables.

▶ If quantitative, then we refer to this as Regression

• e.g. $\mathbb{E}_0[Y|X_1, X_2, ..., X_p]$

If qualitative, then we refer to this as Classification

• e.g.
$$\mathbb{P}_0[Y = y | X_1, X_2, ..., X_p]$$

In both cases, we're interested in learning some function,

$$f_0(X_1, X_2, ..., X_p)$$
 (1)

We estimate f_0 using our data.

Motivation: Why learn f_0 ?

Prediction

- Useful when we can readily get $X_1, X_2, ..., X_p$, but not Y.
- ► Allows us to predict what *Y* likely is.
- Example: Predict stock prices next month using data from last year.

Inference

- Allows us to understand how differences in X₁, X₂, ..., X_p might affect Y.
- Example: What is the influence of genetic variations on the incidence of heart disease.

How do we estimate f_0 ? Two classes of methods:

Parametric models: We assume that f₀ takes a specific form. For example, a linear form:

$$f_0(X_1, X_2, ..., X_p) = X_1\beta_1 + X_2\beta_2 + ... + X_p\beta_p$$
(2)

▶ Non-parametric models: We don't make any assumptions on the form of *f*₀, but we restrict how "wiggly" or "rough" the function can be. For example, using loess.

Visualization

Non-parametric models tend to be larger than parametric models.

Recall: A statistical model is simply a set of probability distributions that you allow your data to follow.

Parametric vs non-parametric fit

Non-parametric models tend to be more flexible.

1. Interpretability: parametric models are simpler to interpret

- 1. Interpretability: parametric models are simpler to interpret
- 2. Convenience: less computation, more reproducibility, better behavior

- 1. Interpretability: parametric models are simpler to interpret
- 2. Convenience: less computation, more reproducibility, better behavior
- 3. Overfitting: non-parametric models tend to overfit (aka. high variance)

Prediction error

Training data: (x_i, y_i) : i = 1, 2, ..., n**Goal**: Estimate f_0 with our data, resulting in \hat{f}_n **Typically**: we get \hat{f}_n by minimizing a prediction error

• Assumes $(x_i, y_i) \stackrel{iid}{\sim} P_0$

Prediction error

Training data: (x_i, y_i) : i = 1, 2, ..., n**Goal**: Estimate f_0 with our data, resulting in \hat{f}_n **Typically**: we get \hat{f}_n by minimizing a prediction error

• Assumes
$$(x_i, y_i) \stackrel{iid}{\sim} P_0$$

Standard prediction error functions:

Classification: Cross-entropy

$$CE(\hat{f}_n) = \mathbb{E}_0[-\mathbf{y}_i \cdot \log \mathbf{\hat{f}}_n(x_i)]$$
(3)

Prediction error

Training data: (x_i, y_i) : i = 1, 2, ..., n**Goal**: Estimate f_0 with our data, resulting in \hat{f}_n **Typically**: we get \hat{f}_n by minimizing a prediction error

• Assumes
$$(x_i, y_i) \stackrel{iid}{\sim} P_0$$

Standard prediction error functions:

Classification: Cross-entropy

$$CE(\hat{f}_n) = \mathbb{E}_0[-\mathbf{y}_i \cdot \log \hat{\mathbf{f}}_n(x_i)]$$
(3)

Regression: Mean squared error

$$MSE(\hat{f}_n) = \mathbb{E}_0[y_i - \hat{f}_n(x_i)]^2$$
(4)

Cross entropy:

$$CE(\hat{f}_n) = \mathbb{E}_0[-\mathbf{y}_i \cdot \log \hat{\mathbf{f}}_n(x_i)]$$
(5)

n.b. We can't directly calculate this, since P_0 is unknown.

Cross entropy:

$$CE(\hat{f}_n) = \mathbb{E}_0[-\mathbf{y}_i \cdot \log \hat{\mathbf{f}}_n(x_i)]$$
(5)

n.b. We can't directly calculate this, since P_0 is unknown.

But:

We do have P_n , i.e. our training data (x_i, y_i) : i = 1, 2, ..., n.

Cross entropy:

$$CE(\hat{f}_n) = \mathbb{E}_0[-\mathbf{y}_i \cdot \log \hat{\mathbf{f}}_n(x_i)]$$
(5)

n.b. We can't directly calculate this, since P_0 is unknown.

But: We do have P_n , i.e. our training data $(x_i, y_i) : i = 1, 2, ..., n$.

Estimating cross entropy

$$\widehat{CE}(\widehat{f}_n) = \mathbb{E}_n[-\mathbf{y}_i \cdot \log \widehat{\mathbf{f}}_n(x_i)]$$
(6)

$$= \frac{1}{n} \sum_{i=1}^{n} -\mathbf{y}_i \cdot \log \hat{\mathbf{f}}_n(x_i)$$
(7)

Similarly:

We estimate the mean squared error using our data.

Estimating mean squared error $\widehat{MSE}(\hat{f}_n) = \mathbb{E}_n[y_i - \hat{f}_n(x_i)]^2 \qquad (8)$ $= \frac{1}{n} \sum_{i=1}^n (y_i - \hat{f}_n(x_i))^2 \qquad (9)$

There are two common problems with prediction errors:

- 1. A high prediction error could mean underfitting.
 - e.g. You could have the wrong functional form

There are two common problems with prediction errors:

- 1. A high prediction error could mean underfitting.
 - e.g. You could have the wrong functional form
- 2. A low prediction error could mean overfitting.
 - e.g. You made your model too flexible

Underfitting

1. A high prediction error could mean underfitting.

True function f_0 .

Observed data and estimated function \hat{f}_n .

Overfitting

2. A low prediction error could mean overfitting.

10.0 7.5 5.0 0 25 50 75 100

True function, f_0 .

Observed data and estimated function \hat{f}_n .

12.5

How to tell if we've under/overfit:

• Evaluate on data not used in training (i.e. from your test set).

Given our test data (x_i', y_i') : i = 1, 2, ..., m, we can calculate a more accurate prediction error, e.g.:

$$\widehat{MSE}(\hat{f}_n) = \mathbb{E}_n^{test} [y_i' - \hat{f}_n(x_i')]^2$$
(10)
= $\frac{1}{m} \sum_{i=1}^m (y_i' - \hat{f}_n(x_i'))^2$ (11)

How to tell if we've under/overfit:

► So, now we have two prediction error estimates, e.g.:

1.
$$\widehat{MSE}^{train}(\hat{f}_n)$$
 from our training data

2.
$$\widehat{MSE}^{test}(\hat{f}_n)$$
 from our test data

If $\widehat{MSE}^{train}(\hat{f}_n) \ll \widehat{MSE}^{test}(\hat{f}_n)$, then we've likely overfit on our training data.

How to tell if we've under/overfit:

Estimates \hat{f}_n of f_0 .

 \widehat{MSE} for each \hat{f}_n .

How to tell if we've under/overfit (with an almost linear f_0):

Estimates \hat{f}_n of f_0 .

 \widehat{MSE} for each \hat{f}_n .

Low flexibility models work well.

Data

11 12 13

Test MSE

Train MSE

How to tell if we've under/overfit (with low noise):

Estimates \hat{f}_n of f_0 .

6

High flexibility models work well.

Let x_0 be a fixed point, $y_0 = f_0(x_0) + \epsilon$, and \hat{f}_n be an estimate of f_0 from $(x_i, y_i) : i = 1, 2, ..., n$.

The MSE at x_0 can be decomposed as

$$MSE(x_0) = \mathbb{E}_0[y_0 - \hat{f}_n(x_0)]^2$$
(12)
= $Var(\hat{f}_n(x_0)) + Bias(\hat{f}_n(x_0))^2 + Var(\epsilon_0)(13)$

$$MSE(x_0) = Var(\hat{f}_n(x_0)) + Bias(\hat{f}_n(x_0))^2 + Var(\epsilon_0)$$

$Var(\epsilon_0)$

Noise from the data distribution, i.e. irreducible error.

True function, f_0 and observed data.

$$MSE(x_0) = \operatorname{Var}(\hat{f}_n(x_0)) + \operatorname{Bias}(\hat{f}_n(x_0))^2 + \operatorname{Var}(\epsilon_0)$$

 $Var(\hat{f}_n(x_0))$

The variance of $\hat{f}_n(x_0)$ (i.e. the estimate of y). How much the estimate \hat{f}_n at x_0 changes with new data.

Observed data and estimate \hat{f}_n .

$$MSE(x_0) = Var(\hat{f}_n(x_0)) + Bias(\hat{f}_n(x_0))^2 + Var(\epsilon_0)$$

$Var(\hat{f}_n(x_0))$

The variance of $\hat{f}_n(x_0)$ (i.e. the estimate of y). How much the estimate \hat{f}_n at x_0 changes with new data.

$$MSE(x_0) = \operatorname{Var}(\hat{f}_n(x_0)) + \operatorname{Bias}(\hat{f}_n(x_0))^2 + \operatorname{Var}(\epsilon_0)$$

$Bias(\hat{f}_n(x_0))^2$

The square of the expected difference, $\mathbb{E}^2[\hat{f}_n(x_0) - f_0(x_0)]$. How far the average prediction \hat{f}_n is from f_0 at x_0 .

STATS 202: Data Mining and Analysis

$$MSE(x_0) = Var(\hat{f}_n(x_0)) + Bias(\hat{f}_n(x_0))^2 + Var(\epsilon_0)$$

Implications:

- ▶ The MSE is always non-negative.
- Each element on the right side is always non-negative.
- Consequently, lowering one element (beyond some point) typically increases another.

Bias variance trade-off

More flexibility \iff Higher variance \iff Lower bias

Bias variance trade-off

More flexibility \iff Higher variance \iff Lower bias

In classification, the output takes values in a discrete set (c.f. continuous values in regression).

Example

If we're trying to predict the brand of a car (based on input features), the function f_0 outputs the (conditional) probabilities of each car brand (e.g. Ford, Toyota, Mercedes, etc.), e.g.

 $\mathbb{P}_0[Y = y | X_1, X_2, ..., X_p] : y \in \{\textit{Ford}, \textit{Toyota}, \textit{Mercedes}, \textit{etc.}\}$ (14)

Regression: $f_0 = \mathbb{E}_0[Y|X_1, X_2, ..., X_p]$

- A scalar value, i.e. $f_0 \in \mathbb{R}$
- \hat{f}_n therefore gives us estimates of y

Classification: $f_0 = \mathbb{P}_0[Y = y | X_1, X_2, ..., X_p]$

► A vectored value, i.e.

$$f_0 = [p_1, p_2, ..., p_K] : p_j \in [0, 1], \sum_K p_j = 1$$

▶ n.b. In a binary setting this simplies to a scalar, i.e. $f_0 = p_1 : p_1 = \mathbb{P}_0[Y = 1 | X_1, X_2, ..., X_p] \in [0, 1]$

• \hat{f}_n therefore gives us predictions of each class

- f_0 gives us a probability of the observation belonging to each class.
- To select a class, we can just pick the element in $f_0 = [p_1, p_2, ..., p_K]$ that's the largest
 - Called the Bayes Classifier
- As a classifier, produces the lowest error rate

Bayes error rate

$$1 - \mathbb{E}_0\left[\max_{y} \mathbb{P}_0[Y = y | X_1, X_2, ..., X_\rho]\right]$$
(15)

Analogous to the irreducible error described previously

Example: Classifying in 2 classes with 2 features.

 X_1

The Bayes error rate is 0.1304.

Note: $C(\mathbf{x}) = \underset{y}{\arg \max} f_0(y)$ may seem easier to estimate

• Can still be hard, depending on the distribution f_0 , e.g.

[1] ISL. Chapters 1-2.

[2] ESL. Chapters 1-2.